scholarly journals Recovering local structure information from high-pressure total scattering experiments

2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Anna Herlihy ◽  
Harry S. Geddes ◽  
Gabriele C. Sosso ◽  
Craig L. Bull ◽  
Christopher J. Ridley ◽  
...  

High pressure is a powerful thermodynamic tool for exploring the structure and the phase behaviour of the crystalline state, and is now widely used in conventional crystallographic measurements. High-pressure local structure measurements using neutron diffraction have, thus far, been limited by the presence of a strongly scattering, perdeuterated, pressure-transmitting medium (PTM), the signal from which contaminates the resulting pair distribution functions (PDFs). Here, a method is reported for subtracting the pairwise correlations of the commonly used 4:1 methanol:ethanol PTM from neutron PDFs obtained under hydrostatic compression. The method applies a molecular-dynamics-informed empirical correction and a non-negative matrix factorization algorithm to recover the PDF of the pure sample. Proof of principle is demonstrated, producing corrected high-pressure PDFs of simple crystalline materials, Ni and MgO, and benchmarking these against simulated data from the average structure. Finally, the first local structure determination of α-quartz under hydrostatic pressure is presented, extracting compression behaviour of the real-space structure.

2014 ◽  
Vol 30 (S1) ◽  
pp. S2-S8 ◽  
Author(s):  
Andrea Bernasconi ◽  
Jonathan Wright ◽  
Nicholas Harker

ID11 is a multi-purpose high-energy beamline at the European Synchrotron Radiation Facility (ESRF). Owing to the high-energy X-ray source (up to 140 keV) and flexible, high-precision sample mounting which allows small sample–detector distances to be achieved, experiments such as total scattering in transmission geometry are possible. This permits the exploration of a wide Q range and so provides high real-space resolution. A range of samples (glasses and crystalline powders) have been measured at 78 keV, first putting the detector as close as possible to the sample (~10 cm), and then moving it vertically and laterally with respect to the beam in order to have circular and quarter circle sections of diffraction rings, with consequent QMAX at the edge of the detector of about 16 and 28 Å−1, respectively. Data were integrated using FIT2D, and then normalized and corrected with PDFgetX3. Results have been compared to see the effects of Q-range and counting statistics on the atomic pair distribution functions of the different samples. A Q of at least 20 Å−1 was essential to have sufficient real-space resolution for both type of samples while statistics appeared more important for glass samples rather than for crystalline samples.


2015 ◽  
Vol 17 (27) ◽  
pp. 17838-17843 ◽  
Author(s):  
Kenta Fujii ◽  
Shinji Kohara ◽  
Yasuhiro Umebayashi

A new function, SQpeak(r); a connection between low-Q peak intensity with real space structure.


1994 ◽  
Vol 6 (23A) ◽  
pp. A187-A192 ◽  
Author(s):  
J A Schouten ◽  
M G E van Hinsberg ◽  
M I M Scheerboom ◽  
J P J Michels

2017 ◽  
Vol 50 (6) ◽  
pp. 1821-1829 ◽  
Author(s):  
Kazimierz Skrobas ◽  
Svitlana Stelmakh ◽  
Stanislaw Gierlotka ◽  
Bogdan F. Palosz

NanoPDF64is a tool designed for structural analysis of nanocrystals based on examination of powder diffraction data with application of real-space analysis. The program allows for fast building of models of nanocrystals consisting of up to several hundred thousand atoms with either cubic or hexagonal close packed structure. The nanocrystal structure may be modified by introducing stacking faults, density modulation waves (i.e.the core–shell model) and thermal atomic vibrations. The program calculates diffraction patterns and, by Fourier transform, the reduced pair distribution functionsG(r) for the models. ExperimentalG(r)s may be quantitatively analyzed by least-squares fitting with an analytical formula.


Author(s):  
Kannan M. Krishnan

Crystalline materials have a periodic arrangement of atoms, exhibit long range order, and are described in terms of 14 Bravais lattices, 7 crystal systems, 32 point groups, and 230 space groups, as tabulated in the International Tables for Crystallography. We introduce the nomenclature to describe various features of crystalline materials, and the practically useful concepts of interplanar spacing and zonal equations for interpreting electron diffraction patterns. A crystal is also described as the sum of a lattice and a basis. Practical materials harbor point, line, and planar defects, and their identification and enumeration are important in characterization, for defects significantly affect materials properties. The reciprocal lattice, with a fixed and well-defined relationship to the real lattice from which it is derived, is the key to understanding diffraction. Diffraction is described by Bragg law in real space, and the equivalent Ewald sphere construction and the Laue condition in reciprocal space. Crystallography and diffraction are closely related, as diffraction provides the best methodology to reveal the structure of crystals. The observations of quasi-crystalline materials with five-fold rotational symmetry, inconsistent with lattice translations, has resulted in redefining a crystalline material as “any solid having an essentially discrete diffraction pattern”


ChemInform ◽  
2011 ◽  
Vol 42 (13) ◽  
pp. no-no
Author(s):  
Cathleen A. Hoel ◽  
Jose Manuel Gallardo Amores ◽  
Emilio Moran ◽  
Miguel Angel Alario-Franco ◽  
Jean-Francois Gaillard ◽  
...  

2018 ◽  
Vol 97 (10) ◽  
Author(s):  
Nadine Hauptmann ◽  
Melanie Dupé ◽  
Tzu-Chao Hung ◽  
Alexander K. Lemmens ◽  
Daniel Wegner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document