A scanning transmission X-ray microscope at the Pohang Light Source

2018 ◽  
Vol 25 (3) ◽  
pp. 878-884 ◽  
Author(s):  
Hyun-Joon Shin ◽  
Namdong Kim ◽  
Hee-Seob Kim ◽  
Wol-Woo Lee ◽  
Chae-Soon Lee ◽  
...  

A scanning transmission X-ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X-rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X-ray microscopy (STXM) setup is from ∼150 to ∼1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction-limited space resolution, ∼30 nm, is achieved in the photon energy range up to ∼850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X-ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ∼50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.

1998 ◽  
Vol 5 (3) ◽  
pp. 648-650 ◽  
Author(s):  
Hyun-Joon Shin ◽  
Y. Chung ◽  
Bongsoo Kim

The first insertion-device beamline at the Pohang Light Source is designed for high-resolution spectroscopy and spectromicroscopy. The beamline will contain a variable-included-angle plane-grating monochromator (VIA-PGM) using a grating substrate which has seven different grooves with different depths. The advantages of this scheme will be the fixed exit-slit position and the mechanical stability of the grating scan mechanism while changing the photon energy range. The beamline is designed to cover the photon energy range 20–2000 eV. The estimated spectral resolution, E/ΔE, is above 8000 in the photon energy range below 500 eV, and above 4000 for the remaining photon energy range. The estimated flux at the end-station is of the order of 1012 photons s−1 (0.1% bandwidth)−1.


2019 ◽  
Vol 485 (2) ◽  
pp. 2970-2975 ◽  
Author(s):  
Kajwan Rasul ◽  
Paula M Chadwick ◽  
Jamie A Graham ◽  
Anthony M Brown

ABSTRACT In this paper we present our study of the gamma-ray emission from the microquasar SS433. Integrating over 9 yr of Fermi-LAT Pass 8 data, we detect SS433 with a significance of ∼13σ in the 200 to 500 MeV photon energy range, with evidence for an extension in the direction of the w1 X-ray ‘hotspot’. A temporal analysis reveals evidence for modulation of SS433’s gamma-ray emission with the precession period of its relativistic jet. This suggests that at least some of SS433’s gamma-ray emission originates close to the object rather than from the jet termination regions.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Din-Goa Liu ◽  
Ming-Han Lee ◽  
Ying-Jui Lu ◽  
Jyh-Fu Lee ◽  
Chi-Liang Chen

The Taiwan Photon Source (TPS) with high brightness and energy tunability is suitable for applications in spectroscopy. The tender X-ray absorption beamline will be optimized for X-ray absorption spectroscopy measurements using a bending-magnet source in a unique photon energy range (1.7–10 keV) and two crystal pairs [InSb(111) and Si(111)] separated using back-to-back double-crystal monochromators (DCMs). InSb crystals are typically used in the lower photon energy range of 1.7–3.5 keV. However, the poor thermal conductivity of InSb crystals leads to severe deformation. This factor should be considered when the monochromator is installed on a tender X-ray beamline in a storage ring with a high power density. There are many approaches to reducing the thermal load on the first crystal of a DCM. Double-bounce high harmonics rejection mirrors in front of the DCM serve not only to reduce the high-order harmonics but also to absorb considerable quantities of heat. Two coating stripes on the silicon surfaces with a variable incident angle will be key to solving the thermal load on this beamline.


2021 ◽  
Vol 28 (2) ◽  
pp. 618-623
Author(s):  
Shotaro Tanaka ◽  
Shuto Suzuki ◽  
Tomohiro Mishima ◽  
Kazuhiro Kanda

Soft X-rays excite the inner shells of materials more efficiently than any other form of light. The investigation of synchrotron radiation (SR) processes using inner-shell excitation requires the beamline to supply a single-color and high-photon-flux light in the soft X-ray region. A new integrated computing multi-layered-mirror (MLM) monochromator was installed at beamline 07A (BL07A) of NewSUBARU, which has a 3 m undulator as a light source for irradiation experiments with high-photon-flux monochromatic light. The MLM monochromator has a high reflectivity index in the soft X-ray region; it eliminates unnecessary harmonic light from the undulator and lowers the temperature of the irradiated sample surfaces. The monochromator can be operated in a high vacuum, and three different mirror pairs are available for different experimental energy ranges; they can be exchanged without exposing the monochromator to the atmosphere. Measurements of the photon current of a photodiode on the sample stage indicated that the photon flux of the monochromatic beam was more than 1014 photons s−1 cm−2 in the energy range 80–400 eV and 1013 photons s−1 cm−2 in the energy range 400–800 eV. Thus, BL07A is capable of performing SR-stimulated process experiments.


2013 ◽  
Vol 21 (1) ◽  
pp. 264-267 ◽  
Author(s):  
Chung-Jong Yu ◽  
Hae Cheol Lee ◽  
Chan Kim ◽  
Wonsuk Cha ◽  
Jerome Carnis ◽  
...  

The coherent X-ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS-II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X-rays of 5–20 keV, and targets coherent X-ray experiments such as coherent diffraction imaging and X-ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described.


Sign in / Sign up

Export Citation Format

Share Document