Three-dimensional characterization of the microstructure in rabbit patella–patellar tendon interface using propagation phase-contrast synchrotron radiation microtomography

2018 ◽  
Vol 25 (6) ◽  
pp. 1833-1840 ◽  
Author(s):  
Yongchun Zhou ◽  
Jianzhong Hu ◽  
Jingyong Zhou ◽  
Ziteng Zeng ◽  
Yong Cao ◽  
...  

Understanding the three-dimensional ultrastructure morphology of tendon-to-bone interface may allow the development of effective therapeutic interventions for enhanced interface healing. This study aims to assess the feasibility of propagation phase-contrast synchrotron radiation microtomography (PPC-SRµCT) for three-dimensional characterization of the microstructure in rabbit patella–patellar tendon interface (PPTI). Based on phase retrieval for PPC-SRµCT imaging, this technique is capable of visualizing the three-dimensional internal architecture of PPTI at a cellular high spatial resolution including bone and tendon, especially the chondrocytes lacuna at the fibrocartilage layer. The features on the PPC-SRµCT image of the PPTI are similar to those of a histological section using Safranin-O staining/fast green staining. The three-dimensional microstructure in the rabbit patella–patellar tendon interface and the spatial distributions of the chondrocytes lacuna and their quantification volumetric data are displayed. Furthermore, a color-coding map differentiating cell lacuna in terms of connecting beads is presented after the chondrocytes cell lacuna was extracted. This provides a more in-depth insight into the microstructure of the PPTI on a new scale, particularly the cell lacuna arrangement at the fibrocartilage layer. PPC-SRµCT techniques provide important complementary information to the conventional histological method for characterizing the microstructure of the PPTI, and may facilitate in investigations of the repair mechanism of the PPTI after injury and in evaluating the efficacy of a different therapy.

2017 ◽  
Vol 24 (2) ◽  
pp. 482-489 ◽  
Author(s):  
Jianzhong Hu ◽  
Ping Li ◽  
Xianzhen Yin ◽  
Tianding Wu ◽  
Yong Cao ◽  
...  

The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.


2016 ◽  
Vol 32 (12) ◽  
pp. 1779-1784 ◽  
Author(s):  
Lorenzo Massimi ◽  
Michela Fratini ◽  
Inna Bukreeva ◽  
Francesco Brun ◽  
Alberto Mittone ◽  
...  

2020 ◽  
Vol 27 (4) ◽  
pp. 1023-1032 ◽  
Author(s):  
Ke Li ◽  
Biao Deng ◽  
Haipeng Zhang ◽  
Fucheng Yu ◽  
Yanling Xue ◽  
...  

Comprehensive evaluation of through-silicon via (TSV) reliability often requires deterministic and 3D descriptions of local morphological and statistical features of via formation with the Bosch process. Here, a highly sensitive phase-contrast X-ray microtomography approach is presented based on recorrection of abnormal projections, which provides comprehensive and quantitative characterization of TSV etching performance. The key idea is to replace the abnormal projections at specific angles in principles of linear interpolation of neighboring projections, and to distinguish the interface between silicon and air by using phase-retrieval algorithms. It is demonstrated that such a scheme achieves high accuracy in obtaining the etch profile based on the 3D microstructure of the vias, including diameter, bottom curvature radius, depth and sidewall angle. More importantly, the 3D profile error of the via sidewall and the consistency of parameters among all the vias are achieved and analyzed statistically. The datasets in the results and the 3D microstructure can be applied directly to a reference and model for further finite element analysis. This method is general and has potentially broad applications in 3D integrated circuits.


2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shizhen Yuan ◽  
Tian-tian Wang ◽  
...  

Abstract Objectives This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using X-ray in-line phase-contrast imaging (XILPCI). The aim of the study was to demonstrate that XILPCI is a micron imaging method for gastric structures. Methods The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution. Results The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastroduodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future. Keywords: Synchrotron radiation phase-contrast imaging, 3-dimensional gastric structure images


2015 ◽  
Vol 21 (S3) ◽  
pp. 919-920
Author(s):  
Rino Saiga ◽  
Susumu Takekoshi ◽  
Chie Inomoto ◽  
Naoya Nakamura ◽  
Akio Tsuboi ◽  
...  

2021 ◽  
Vol 19 (7) ◽  
pp. 073401
Author(s):  
Ke Li ◽  
Yantao Gao ◽  
Haipeng Zhang ◽  
Guohao Du ◽  
Hefei Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document