3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging

2019 ◽  
Vol 26 (5) ◽  
pp. 1742-1750 ◽  
Author(s):  
Shupeng Shi ◽  
Haoran Zhang ◽  
Xianzhen Yin ◽  
Zhuolu Wang ◽  
Bin Tang ◽  
...  

Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.

2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shizhen Yuan ◽  
Tian-tian Wang ◽  
...  

Abstract Objectives This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using X-ray in-line phase-contrast imaging (XILPCI). The aim of the study was to demonstrate that XILPCI is a micron imaging method for gastric structures. Methods The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution. Results The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastroduodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future. Keywords: Synchrotron radiation phase-contrast imaging, 3-dimensional gastric structure images


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Li ◽  
Luke Helpard ◽  
Jonas Ekeroot ◽  
Seyed Alireza Rohani ◽  
Ning Zhu ◽  
...  

AbstractThe human cochlea transforms sound waves into electrical signals in the acoustic nerve fibers with high acuity. This transformation occurs via vibrating anisotropic membranes (basilar and tectorial membranes) and frequency-specific hair cell receptors. Frequency-positions can be mapped within the cochlea to create a tonotopic chart which fits an almost-exponential function with lowest frequencies positioned apically and highest frequencies positioned at the cochlear base (Bekesy 1960, Greenwood 1961). To date, models of frequency positions have been based on a two-dimensional analysis with inaccurate representations of the cochlear hook region. In the present study, the first three-dimensional frequency analysis of the cochlea using dendritic mapping to obtain accurate tonotopic maps of the human basilar membrane/organ of Corti and the spiral ganglion was performed. A novel imaging technique, synchrotron radiation phase-contrast imaging, was used and a spiral ganglion frequency function was estimated by nonlinear least squares fitting a Greenwood-like function (F = A (10ax − K)) to the data. The three-dimensional tonotopic data presented herein has large implications for validating electrode position and creating customized frequency maps for cochlear implant recipients.


2019 ◽  
Vol 26 (6) ◽  
pp. 2024-2032 ◽  
Author(s):  
Hong-Lei Li ◽  
Hui Ding ◽  
Xian-Zhen Yin ◽  
Zhuo-Hui Chen ◽  
Bin Tang ◽  
...  

Conventional imaging methods such as magnetic resonance imaging, computed tomography and digital subtraction angiography have limited temporospatial resolutions and shortcomings like invasive angiography, potential allergy to contrast agents, and image deformation, that restrict their application in high-resolution visualization of the structure of microvessels. In this study, through comparing synchrotron radiation (SR) absorption-contrast imaging to absorption phase-contrast imaging, it was found that SR-based phase-contrast imaging could provide more detailed ultra-high-pixel images of microvascular networks than absorption phase-contrast imaging. Simultaneously, SR-based phase-contrast imaging was used to perform high-quality, multi-dimensional and multi-scale imaging of rat brain angioarchitecture. With the aid of image post-processing, high-pixel-size two-dimensional virtual slices can be obtained without sectioning. The distribution of blood supply is in accordance with the results of traditional tissue staining. Three-dimensional anatomical maps of cerebral angioarchitecture can also be acquired. Functional partitions of regions of interest are reproduced in the reconstructed rat cerebral vascular networks. Imaging analysis of the same sample can also be displayed simultaneously in two- and three-dimensional views, which provides abundant anatomical information together with parenchyma and vessels. In conclusion, SR-based phase-contrast imaging holds great promise for visualizing microstructure of microvascular networks in two- and three-dimensional perspectives during the development of neurovascular diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueshuang Mei ◽  
Rudolf Glueckert ◽  
Annelies Schrott-Fischer ◽  
Hao Li ◽  
Hanif M. Ladak ◽  
...  

AbstractHuman spiral ganglion (HSG) cell bodies located in the bony cochlea depend on a rich vascular supply to maintain excitability. These neurons are targeted by cochlear implantation (CI) to treat deafness, and their viability is critical to ensure successful clinical outcomes. The blood supply of the HSG is difficult to study due to its helical structure and encasement in hard bone. The objective of this study was to present the first three-dimensional (3D) reconstruction and analysis of the HSG blood supply using synchrotron radiation phase-contrast imaging (SR-PCI) in combination with histological analyses of archival human cochlear sections. Twenty-six human temporal bones underwent SR-PCI. Data were processed using volume-rendering software, and a representative three-dimensional (3D) model was created to allow visualization of the vascular anatomy. Histologic analysis was used to verify the segmentations. Results revealed that the HSG is supplied by radial vascular twigs which are separate from the rest of the inner ear and encased in bone. Unlike with most organs, the arteries and veins in the human cochlea do not follow the same conduits. There is a dual venous outflow and a modiolar arterial supply. This organization may explain why the HSG may endure even in cases of advanced cochlear pathology.


2017 ◽  
Vol 354 ◽  
pp. 1-8 ◽  
Author(s):  
Mai Elfarnawany ◽  
Seyed Alireza Rohani ◽  
Soroush Ghomashchi ◽  
Daniel G. Allen ◽  
Ning Zhu ◽  
...  

2020 ◽  
Vol 1 ◽  
pp. 81-91
Author(s):  
Koki Yokawa ◽  
Masato Hoshino ◽  
Naoto Yagi ◽  
Yutaka Nakashima ◽  
Kazunori Nakagawa ◽  
...  

2009 ◽  
Author(s):  
R. V. Reeves ◽  
J. D. E. White ◽  
E. M. Dufresne ◽  
K. Fezzaa ◽  
S. F. Son ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document