scholarly journals XTIP – the world's first beamline dedicated to the synchrotron X-ray scanning tunneling microscopy technique

2020 ◽  
Vol 27 (3) ◽  
pp. 836-843 ◽  
Author(s):  
Volker Rose ◽  
Nozomi Shirato ◽  
Michael Bartlein ◽  
Alex Deriy ◽  
Tolulope Ajayi ◽  
...  

In recent years, there have been numerous efforts worldwide to develop the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique. Here, the inauguration of XTIP, the world's first beamline fully dedicated to SX-STM, is reported. The XTIP beamline is located at Sector 4 of the Advanced Photon Source at Argonne National Laboratory. It features an insertion device that can provide left- or right-circular as well as horizontal- and vertical-linear polarization. XTIP delivers monochromatic soft X-rays of between 400 and 1900 eV focused into an environmental enclosure that houses the endstation instrument. This article discusses the beamline system design and its performance.

1997 ◽  
Vol 3 (S2) ◽  
pp. 905-906
Author(s):  
Mark L. Rivers ◽  
Stephen R. Sutton ◽  
Peter Eng ◽  
Matthew Newville

The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation synchrotron x-ray source, optimized for producing x-rays from undulators. Such undulator sources provide extremely bright, quasi-monochromatic radiation which is ideal for an x-ray microprobe. Such microprobes can be used for trace element quantification with x-ray fluorescence, or for chemical state determination with x-ray absorption spectroscopy. The GeoSoilEnviroCARS (GSECARS) sector at the APS is building an x-ray microprobe for research in earth, planetary, soil and environmental sciences.The GSECARS undulator source is a standard APS Undulator “A” which is a 3.3 cm period device with 72 periods. The energies of the undulator peaks can be varied by adjusting the gap, and hence the magnetic field of the undulator. The energy of the first harmonic can be varied in this way from approximately 3.1 keV to 14 keV. A measured undulator spectrum is shown in Figure 1.


2015 ◽  
Vol 1754 ◽  
pp. 135-140 ◽  
Author(s):  
Nozomi Shirato ◽  
Marvin Cummings ◽  
Heath Kersell ◽  
Yang Li ◽  
Dean Miller ◽  
...  

ABSTRACTX-ray beam-induced damage in nanoscale metal islands was investigated. Monolayer-high Ni islands were prepared on a Cu(111) substrate. High brilliance X-rays with photon energies between 8.45 and 8.85 keV illuminated the sample for about 11 hours. In order to track changes in the morphology of the islands, the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique was utilized. The result shows that X-ray illumination onto Ni islands does not induce noticeable damage. The study demonstrates that local beam-induced changes can be studied using SX-STM.


1988 ◽  
Vol 143 ◽  
Author(s):  
David E. Moncton

AbstractArgonne National Laboratory is preparing to build a new synchrotron radiation source, the 7-GeV Advanced Photon Source (APS), that will provide the world's most brilliant x-ray beams for research. The APS will produce x-rays for materials research, condensed-matter physics, chemistry, and biological and medical studies by researchers from industry, universities, and national laboratories.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 588
Author(s):  
Hui Yan ◽  
Nozomi Shirato ◽  
Xiangde Zhu ◽  
Daniel Rosenmann ◽  
Xiao Tong ◽  
...  

Synchrotron X-ray Scanning Tunneling Microscopy (SX-STM) is a novel imaging technique capable of providing real space chemically specific mapping with a potential of reaching atomic resolution. Determination of chemical composition along with ultra-high resolution imaging by SX-STM can be realized through excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular atom during raster scanning, as is done in the conventional STM experiments. In this work, we provide a brief summary and the current status of SX-STM and discuss its applications for material science. In particular, we discuss instrumentation challenges associated with the SX-STM technique and present early experiments on Cu doped ZrTe3 single crystals.


2020 ◽  
Vol 27 (5) ◽  
pp. 1382-1387
Author(s):  
Volker Rose ◽  
Tolulope Ajayi ◽  
Daniel Rosenmann ◽  
Nozomi Shirato

An ultra-high-vacuum compatible X-ray chopper system has been designed, constructed and integrated into the XTIP beamline at the Advanced Photon Source at Argonne National Laboratory. The XTIP beamline can operate at soft X-ray energies from 400 eV to 1900 eV while providing a focused beam down to about 10 µm × 10 µm into the synchrotron X-ray scanning tunneling microscopy (SX-STM) endstation instrument. The X-ray chopper is a critical component for separating topographic information from chemical information in SX-STM through phase-sensitive current detection. Depending on the experimental needs, the modulation frequency can be controlled from 100 Hz to 10 kHz. In addition, the chopper system is fully bakeable and can achieve a base pressure of 10−10 mbar. Facilities for active water cooling have been designed, but passive cooling through copper braids has been shown to be sufficient at standard chopping frequencies. Using an Fe/Al2O3/CoAl(111) sample, the separation of the SX-STM current into a chemical component and a stable feedback signal is demonstrated.


Author(s):  
H.-J. Cantow ◽  
H. Hillebrecht ◽  
S. Magonov ◽  
H. W. Rotter ◽  
G. Thiele

From X-ray analysis, the conclusions are drawn from averaged molecular informations. Thus, limitations are caused when analyzing systems whose symmetry is reduced due to interatomic interactions. In contrast, scanning tunneling microscopy (STM) directly images atomic scale surface electron density distribution, with a resolution up to fractions of Angstrom units. The crucial point is the correlation between the electron density distribution and the localization of individual atoms, which is reasonable in many cases. Thus, the use of STM images for crystal structure determination may be permitted. We tried to apply RuCl3 - a layered material with semiconductive properties - for such STM studies. From the X-ray analysis it has been assumed that α-form of this compound crystallizes in the monoclinic space group C2/m (AICI3 type). The chlorine atoms form an almost undistorted cubic closed package while Ru occupies 2/3 of the octahedral holes in every second layer building up a plane hexagon net (graphite net). Idealizing the arrangement of the chlorines a hexagonal symmetry would be expected. X-ray structure determination of isotypic compounds e.g. IrBr3 leads only to averaged positions of the metal atoms as there exist extended stacking faults of the metal layers.


2001 ◽  
Vol 89 (1) ◽  
pp. 181-187 ◽  
Author(s):  
C. M. Schmidt ◽  
D. E. Bürgler ◽  
D. M. Schaller ◽  
F. Meisinger ◽  
H.-J. Güntherodt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document