scholarly journals Modelling the effects of optical vibrations on photon beam parameters using ray-tracing software

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
C. Houghton ◽  
C. Bloomer ◽  
L. Alianelli

A method to simulate beam properties observed at the beamline sample-point in the presence of motion of optical components has been developed at Diamond Light Source. A series of stationary ray-tracing simulations are used to model the impact on the beam stability caused by dynamic motion of optical elements. Ray-tracing simulations using SHADOW3 in OASYS, completed over multiple iterations and stitched together, permit the modelling of a pseudo-dynamic beamline. As beamline detectors operating at higher frequencies become more common, beam stability is crucial. Synchrotron ring upgrades to low-emittance lattices require increased stability of beamlines in order to conserve beam brightness. By simulating the change in beam size and position, an estimate of the impact the motion of various components have on stability is possible. The results presented in this paper focus on modelling the physical vibration of optical elements. Multiple beam parameters can be analysed in succession without manual input. The simulation code is described and the initial results obtained are presented. This method can be applied during beamline design and operation for the identification of optical elements that may introduce large errors in the beam properties at the sample-point.

2011 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
U. H. Wagner ◽  
Z. D. Pešić ◽  
C. Rau

I13L is a 250 m long hard X-ray beamline (6–30 keV) currently under construction at the Diamond Light Source. The beamline comprises two independent experimental endstations: one for imaging in direct space using X-ray microscopy and one for imaging in reciprocal space using coherent diffraction-based imaging techniques. This paper will discuss the coherence branch, where well-defined coherence properties and preservation of the coherent flux are important. We will demonstrate the impact of optical components and stability onto the beamline performance, using phase-space-based ray-tracing techniques. The implications onto the beamline design will be demonstrated using our in-house build quadruple crystal monochromator as an example.


2010 ◽  
Vol 438 ◽  
pp. 65-72 ◽  
Author(s):  
Andreas Mehner ◽  
Ju An Dong ◽  
Timo Hoja ◽  
Torsten Prenzel ◽  
Yildirim Mutlugünes ◽  
...  

The demand for high precision optical elements as micro lens arrays for displays increases continually. Economic mass production of such optical elements is done by replication with high precision optical molds. A new approach for manufacturing such molds was realized by diamond machinable and wear resistant sol-gel coatings. Crack free silica based hybrid coatings from base catalyzed sols from tetraethylorthosilicate (TEOS: Si(OC2H5)4) and methyltriethoxysilane (MTES: Si(CH3)(OC2H5)3) precursors were deposited onto pre-machined steel molds by spin coating process followed by a heat treatment at temperatures up to 800°C. Crack-free multilayer coatings with a total thickness of up to 18 µm were achieved. Micro-machining of these coatings was accomplished by high precision fly cutting with diamond tools. Molds with micro-structured coatings were successfully tested for injection molding of PMMA optical components. The wear resistance of the coatings was successfully tested by injection molding of 1000 PMMA lenses. Hardness and elastic modulus of the coatings were measured by nano indentation. The chemical composition was measured by X-ray photo electron spectroscopy (XPS) as a function of the sol-gel processing parameters.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Emmanuele D’Andrea ◽  
Maurizio Arena ◽  
Massimo Viscardi ◽  
Tommaso Coppola

An increasing attention has recently been paid to the effect of the underwater noise field generated by ship activities on the marine environment. Although this problem is widely discussed in international treaties and conventions, it has not yet found a consolidated technical-scientific treatment capable of quantifying the level of underwater noise emissions produced by naval systems. As part of a national research collaboration, a novel code has been developed to predict noise propagation according to the Ray Tracing approach. Such optical geometry-based technique allows for calculating the Transmission Loss (TL) trend in its respective contributions: geometrical loss (due to the distance between the source and receiver), dissipation loss (due to the characteristics of the propagation environment), and reflection loss (due to the surfaces that delimit the field). The simulation requires as input parameters the source info as spatial position, frequency, and sound pressure level (SPL) as well as the sea properties like seabed depth, the speed of sound profile, the layers thickness the water column is divided into, the sea salinity, temperature, and pH. The simulation code provides the SPL spatial distribution useful as a fast industrial tool in the future studies addressed to identify the emission limits for the protection of marine wildlife.


1991 ◽  
Vol 30 (31) ◽  
pp. 4521 ◽  
Author(s):  
Quan-Ting Liang ◽  
Xian-Dong Zheng

Instruments ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 29
Author(s):  
Simone Andresen

Synchrotron radiation facilities are very important in different areas of fundamental and applied science to investigate structures or processes at small scales. Magnet–girder assemblies play a key role for the performance of such accelerator machines. High structural eigenfrequencies of the magnet–girder assemblies are required to assure a sufficient particle beam stability. The objective of the present parametric study was to numerically investigate and quantify the impact of different boundary conditions and components on the magnet–girder eigenfrequencies. As case studies, two 3 m long girder designs following the specifications of the PETRA IV project at DESY (German Electron Synchrotron, Hamburg, Germany) were selected. High magnet–girder assembly eigenfrequencies were achieved by, e.g., positioning the magnets close to the upper girder surface, increasing the connection stiffness between the magnets and the girder and between the girder and the bases, and positioning the girder support points as high as possible in the shape of a large triangle. Comparing the E/ρ ratio (E: Young’s modulus, ρ: material density) of different materials was used as a first approach to evaluate different materials for application to the girder. Based on the findings, general principles are recommended to be considered in the future girder design development processes.


2019 ◽  
Vol 215 ◽  
pp. 13003
Author(s):  
Sara Nagelberg ◽  
Amy Goodling ◽  
Kaushikaram Subramanian ◽  
George Barbastathis ◽  
Moritz Kreysing ◽  
...  

Micro-scale optical components play a critical role in many applications, in particular when these components are capable of dynamically responding to different stimuli with a controlled variation of their optical behavior. Here, we discuss the potential of micro-scale bi-phase emulsion droplets as a material platform for dynamic fluid optical components. Such droplets act as liquid compound micro-lenses with dynamically tunable focal lengths. They can be reconfigured to focus or scatter light and form images. In addition, we discuss how these droplets can be used to create iridescent structural color with large angular spectral separation. Experimental demonstrations of the emulsion droplet optics are complemented by theoretical analysis and wave-optical modelling. Finally, we provide evidence of the droplets utility as fluidic optical elements in potential application scenarios.


Sign in / Sign up

Export Citation Format

Share Document