ZnO/ZnS (hetero)structures: ab initio investigations of polytypic behavior of mixed ZnO and ZnS compounds

Author(s):  
Dejan Zagorac ◽  
Jelena Zagorac ◽  
J. Christian Schön ◽  
Nemanja Stojanović ◽  
Branko Matović

The range of feasible ZnO/ZnS polytypes has been explored, predicting alternative structural arrangements compared with previously suggested or observed structural forms of ZnO/ZnS compounds, including bulk crystal structures, various nanostructures, heterostructures and heterojunctions. All calculations were performed ab initio using density functional theory–local density approximation and hybrid Heyd–Scuseria–Ernzerhof functionals. Specifically, pure ZnO and ZnS compounds and mixed ZnO1–x S x compounds (x = 0.20, 0.25, 0.33, 0.50, 0.60, 0.66 and 0.75) are investigated and a multitude of possible stable polytypes for ZnO/ZnS compounds creating new possibilities for synthesis of new materials with improved physical and chemical properties are identified.

2017 ◽  
Vol 46 (2) ◽  
pp. 529-538 ◽  
Author(s):  
Yunguo Li ◽  
Pavel A. Korzhavyi

The electronic structure and chemical bonding of Cu(i) compounds with O and/or H are investigated using ab initio calculations based on density functional theory.


Química Nova ◽  
2021 ◽  
Author(s):  
Kamila Ody ◽  
João Jesus ◽  
Carlos Cava ◽  
Anderson Albuquerque ◽  
Ary Maia ◽  
...  

ASSESSMENT OF THE ELECTRONIC STRUCTURE OF THE MONOCLINIC PHASE OF NIOBIUM OXIDE BASED ON THE USE OF DIFFERENT DENSITY FUNCTIONALS. Niobium oxides, Nb2O5, are considered semiconductor materials with very attractive physical and chemical properties for applications in many areas, such as catalysis, sensors, medical, aerospace, etc. Especially, the characterization of Nb2O5-based nanostructures with monoclinic structure has received much attention in recent years. However, despite the great importance of this system, some of its fundamentals properties are still not fully understood. Hence, this work aims to apply the theoretical methodologies through Density Functional Theory (DFT) calculations in periodic models based on the use of different density functionals (like B1WC, B3PW, B3LYP, PBE0, PBESOL0, SOGGAXC, and WC1LYP) to investigate the physical and chemical properties of the monoclinic structure of Nb2O5. The band structures, energy bandgap, density of state, and vibrational properties, as well as order-disorder effects on the monoclinic structure of Nb2O5 are investigated in this study. Our theoretical results show a better agreement with experimental data for the B3LYP functional and hence lead to new perspectives on the deeper physicochemical understanding of the monoclinic Nb2O5. From these computational tools, it is possible to unravel the relations between structure and properties, which may contribute to the future development of new devices and applications based on these materials.


2017 ◽  
Vol 19 (23) ◽  
pp. 15484-15502 ◽  
Author(s):  
Anderson S. Chaves ◽  
Maurício J. Piotrowski ◽  
Juarez L. F. Da Silva

Subnanometric transition-metal (TM) clusters have attracted great attention due to their unexpected physical and chemical properties, leastwise compared to their bulk counterparts.


2013 ◽  
Vol 816-817 ◽  
pp. 65-69
Author(s):  
Yi Zhang

New materials play an important part in today high and new technology.Superconducting nanomaterial has become the most vibrant in new material research due to its unique physical and chemical properties. This paper focuses on how small-size effect affects superconducting transition temperature, and summarizes the concrete preparation methods of superconducting nanomaterials, hoping to provide a reference for material researchers.


2001 ◽  
Vol 16 (8) ◽  
pp. 2293-2297
Author(s):  
Ming Zhang ◽  
Jiang Shen ◽  
Jiawen He

The three single-crystal elastic constants of the cubic materials Al and TiN were calculated by an ab initio method within the local-density approximation of density-functional theory. The values were compared with experiment and averaged by the Kroner method to give polycrystalline results. The results agree well with experiment.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Qing Liao ◽  
Tingting Song

In the development of modern society, many new materials and technologies have been integrated into the development of various industries. As a new type of two-dimensional carbon nanomaterials, graphene has great advantages in physical and chemical properties and is widely used in various fields of development. Among them, the electrochemical method is one of the important ways to prepare graphene materials, which has the characteristics of quickness and environmental protection, and can effectively produce a large amount of high-quality graphene and its composite materials. Based on this, the paper introduces the preparation method of graphene materials and studies the application of graphene materials in the field of electrochemistry.


2018 ◽  
Vol 6 (21) ◽  
pp. 10111-10120 ◽  
Author(s):  
Yuntong Zhu ◽  
Ki Chul Kim ◽  
Seung Soon Jang

Boron-doped coronenes are attractive as promising positive electrode materials for lithium-ion batteries due to the unique physical and chemical properties of coronene.


2012 ◽  
Vol 9 (74) ◽  
pp. 2299-2308 ◽  
Author(s):  
Fujia Chen ◽  
David Porter ◽  
Fritz Vollrath

Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials.


Sign in / Sign up

Export Citation Format

Share Document