Daliranite, PbHgAs2S5: determination of the incommensurately modulated structure and revision of the chemical formula

Author(s):  
Arianna E. Lanza ◽  
Mauro Gemmi ◽  
Luca Bindi ◽  
Enrico Mugnaioli ◽  
Werner H. Paar

The incommensurately modulated crystal structure of the mineral daliranite has been determined using 3D electron diffraction data obtained on nanocrystalline domains. Daliranite is orthorhombic with a = 21, b = 4.3, c = 9.5 Å and shows modulation satellites along c. The solution of the average structure in the Pnma space group together with energy-dispersive X-ray spectroscopy data obtained on the same domains indicate a chemical formula of PbHgAs2S5, which has one S fewer than previously reported. The crystal structure of daliranite is built from columns of face-sharing PbS8 bicapped trigonal prisms laterally connected by [2+4]Hg polyhedra and (As3+ 2S5)4− groups. The excellent quality of the electron diffraction data allows a structural model to be built for the modulated structure in superspace, which shows that the modulation is due to an alternated occupancy of a split As site.

Author(s):  
D. L. Dorset ◽  
H. A. Hauptman

The significant impediment to the use of electron diffraction data for crystal structure analysis is, of course, the perturbation of n-beam dynamical effects. In more severe cases this dynamical perturbation gives an intensity distribution in the diffraction pattern which is not directly related to the underlying crystal structure, thus making the determination of complex structures nearly impossible by this technique.However, as was experimentally established in Vainshtein's laboratory and is theoretically predicted, the diffraction of electrons from thin mosaic crystals composed of light atoms is in accord with kinematical theory to a good first approximation and, furthermore, ab initiocrystal structure analyses are tractable viastandard crystallographic phase determination. To date the few electronographic determinations of unknown organic structures have used either trial and error or Patterson techniques.


2018 ◽  
Vol 51 (4) ◽  
pp. 1094-1101 ◽  
Author(s):  
Yunchen Wang ◽  
Taimin Yang ◽  
Hongyi Xu ◽  
Xiaodong Zou ◽  
Wei Wan

The continuous rotation electron diffraction (cRED) method has the capability of providing fast three-dimensional electron diffraction data collection on existing and future transmission electron microscopes; unknown structures could be potentially solved and refined using cRED data collected from nano- and submicrometre-sized crystals. However, structure refinements of cRED data using SHELXL often lead to relatively high R1 values when compared with those refined against single-crystal X-ray diffraction data. It is therefore necessary to analyse the quality of the structural models refined against cRED data. In this work, multiple cRED data sets collected from different crystals of an oxofluoride (FeSeO3F) and a zeolite (ZSM-5) with known structures are used to assess the data consistency and quality and, more importantly, the accuracy of the structural models refined against these data sets. An evaluation of the precision and consistency of the cRED data by examination of the statistics obtained from the data processing software DIALS is presented. It is shown that, despite the high R1 values caused by dynamical scattering and other factors, the refined atomic positions obtained from the cRED data collected for different crystals are consistent with those of the reference models refined against single-crystal X-ray diffraction data. The results serve as a reference for the quality of the cRED data and the achievable accuracy of the structural parameters.


2005 ◽  
Vol 60 (6) ◽  
pp. 459-468 ◽  
Author(s):  
Jürgen Ankele ◽  
Joachim Mayer ◽  
Peter Lamparter ◽  
Siegfried Steeb

A method has been developed to obtain quantitative electron diffraction data up to a value of Q = 20 Å−1 of the modulus of the scattering vector. The experiments were performed on a commercially available transmission electron microscope equipped with a so-called omega energy filter. An analytical multiple scattering correction was applied. The electron diffraction results obtained with amorphous germanium were compared with X-ray and neutron diffraction data and showed good agreement. For an amorphous Ni63Nb37 sample it was shown that it is possible to estimate the multiple scattering intensity without exact knowledge of the sample thickness. This technique was applied to derive the structure factor for electron diffraction of two precursor-derived amorphous Si-C-N ceramics (a-Si24C43N33 and a-Si40C24N36). The results are consistent with corresponding X-ray diffraction data and with an existing structural model for such ceramics.


Author(s):  
Tatiana E. Gorelik ◽  
Jacco van de Streek ◽  
Herbert Meier ◽  
Lars Andernach ◽  
Till Opatz

The solid-state structure of star-shaped 2,4,6-tris{(E)-2-[4-(dimethylamino)-phenyl]ethenyl}-1,3,5-triazine is determined from a powder sample by exploiting the respective strengths of single-crystal three-dimensional electron diffraction and powder X-ray diffraction data. The unit-cell parameters were determined from single crystal electron diffraction data. Using this information, the powder X-ray diffraction data were indexed, and the crystal structure was determined from the powder diffraction profile. The compound crystallizes in a noncentrosymmetric space group,P212121. The molecular conformation in the crystal structure was used to calculate the molecular dipole moment of 3.22 Debye, which enables the material to show nonlinear optical effects.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


Sign in / Sign up

Export Citation Format

Share Document