A general model for the crystal structure of orthorhombic martensite in Ti alloys

Author(s):  
Sergey Demakov ◽  
Iana Kylosova ◽  
Stepan Stepanov ◽  
Matthias Bönisch

The present work develops a novel unified approach to describe the crystal structure of orthorhombic martensite (α′′) in Ti alloys independent of chemical composition. By employing a straightforward yet highly instructive solid sphere model for the basic tetrahedral structural unit the crystal structures involved in the β ↔ α′′/α′ martensitic transformation are categorized into several intermediate configurations. Importantly, a new metric is introduced, δ, which unambiguously characterizes the atomic positions inside the orthorhombic unit cell depending on unit-cell geometry. Furthermore, the exclusive use of relative quantities to describe unit-cell geometry and atom positions renders the approach developed herein independent of alloy content. In this way, shortcomings of commonly suggested structural metrics for α′′ are eliminated. Subsequently, the novel methodology is applied to analyse and compare the crystal structure of α′′ across a broad range of Ti alloys based on experimentally measured unit-cell parameters. From this analysis it emerges that a large fraction of structural configurations along the b.c.c.–Cmcm–h.c.p. transformation path is not observed in quenched alloys. The threshold between the not-observed and the remaining well observed configurations is identified with an ideal Cmcm crystal structure, relative to which the experimentally found α′′ is compressed along its c axis.

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1495
Author(s):  
Zhengxiang Shu ◽  
Can Shen ◽  
Anhuai Lu ◽  
Xiangping Gu ◽  
Zhongfa Liu

The crystal structure of bornite with ideal formula Cu5FeS4 from the Saishitang skarn copper deposit in Qinghai Province, along with bornite from the Yushui spouting hydrothermal copper deposit in Guangdong Province and the Bofang sandstone copper deposit in Hunan Province, has been refined by single-crystal X-ray diffraction with R1 = 0.0259–0.0483 (I > 2σ) and 0.0338–0.1067 for 2732 to 3273 unique reflections. As represented by the Saishitang sample, it is orthorhombic with a Pbca space group and unit cell parameters a = 10.97016(18) Å, b = 21.8803(4) Å, c = 10.9637(2) Å, V = 2631.61(8) Å3 and Z = 16. The structure is composed of sulfur layers parallel to the (0 1 0) lattice plane with interstices occupied by metal atoms. The Fe atoms occupy two tetrahedral sites with full occupancy, but the Cu atoms are all partially distributed over 20 paired sites, split from 10 sites with a distance ranging from 0.24 Å to 0.54 Å. The Fe-S tetrahedra are not split with Fe-S lengths from 2.2609 Å to 2.3286 Å (average 2.2997 Å). The Cu-S lengths in pyramidal triangles are from 2.218 Å to 2.397 Å (average 2.288 Å), whereas the Cu-S tetrahedra are strongly distorted, with great variations in Cu-S lengths from 2.224 Å to 2.604 Å (average 2.391 Å). The orthorhombic unit cell is stacked from 16 1a-type (5.5 Å) cubes; each cube has one tetrahedrally-coordinated Fe atom, five split from 3- to 4-coordinated Cu atoms, and two vacancies, i.e., 5CuIII–IV+FeIV+2[]+4S. The phenomenon of site-splitting of Cu atoms may provide for a more accurate structure of bornite, allowing for a better understanding of its magnetic properties and ore-formation conditions.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2012 ◽  
Vol 76 (3) ◽  
pp. 443-453 ◽  
Author(s):  
J. Plášil ◽  
K. Fejfarová ◽  
R. Skála ◽  
R. Škoda ◽  
N. Meisser ◽  
...  

AbstractTwo crystals of the uranyl carbonate mineral grimselite, ideally K3Na[(UO2)(CO3)3](H2O), from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO8 polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO8 polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is (K2.43Na0.57)Σ3.00Na[(UO2)(CO3)3](H2O). The unit-cell parameters, refined in space group P2c, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å3 and Z = 2. The crystal structure was refined to R1 = 0.0082 and wR1 = 0.0185 with a GOF = 1.33, based on 626 observed diffraction peaks [Iobs>3σ(I)].


1971 ◽  
Vol 38 (293) ◽  
pp. 72-75 ◽  
Author(s):  
G. W. Smith ◽  
R. Walls

SummaryA re-examination of the mineral scolecite has shown that the previously published monoclinic (pseudo-orthorhombic) unit cell is face-centred and that the Hermann-Mauguin spacegroup symbol has been incorrectly assigned. The reduced monoclinic cell yields a 9·85 Å, b 18·98 Å, c 6·52 Å, β 110° 61; space group Aa. New indexed powder data are included.


2020 ◽  
Vol 84 (5) ◽  
pp. 699-704
Author(s):  
Luca Bindi ◽  
Andrew C. Roberts ◽  
Cristian Biagioni

AbstractAlstonite, BaCa(CO3)2, is a mineral described almost two centuries ago. It is widespread in Nature and forms magnificent cm-sized crystals. Notwithstanding, its crystal structure was still unknown. Here, we report the crystal-structure determination of the mineral and discuss it in relationship to other polymorphs of BaCa(CO3)2. Alstonite is trigonal, space group P31m, with unit-cell parameters a = 17.4360(6), c = 6.1295(2) Å, V = 1613.80(9) Å3 and Z = 12. The crystal structure was solved and refined to R1 = 0.0727 on the basis of 4515 reflections with Fo > 4σ(Fo) and 195 refined parameters. Alstonite is formed by the alternation, along c, of Ba-dominant and Ca-dominant layers, separated by CO3 groups parallel to {0001}. The main take-home message is to show that not all structure determinations of minerals/compounds can be solved routinely. Some crystals, even large ones displaying excellent diffraction quality, can be twinned in complex ways, thus making their study a crystallographic challenge.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


Author(s):  
Janet Newman ◽  
Julie A. Sharp ◽  
Ashwantha Kumar Enjapoori ◽  
John Bentley ◽  
Kevin R. Nicholas ◽  
...  

Monotreme lactation protein (MLP) is a recently identified protein with antimicrobial activity. It is present in the milk of monotremes and is unique to this lineage. To characterize MLP and to gain insight into the potential role of this protein in the evolution of lactation, the crystal structure of duck-billed platypus (Ornithorhynchus anatinus) MLP was determined at 1.82 Å resolution. This is the first structure to be reported for this novel, mammalian antibacterial protein. MLP was expressed as a FLAG epitope-tagged protein in mammalian cells and crystallized readily, with at least three space groups being observed (P1,C2 andP21). A 1.82 Å resolution native data set was collected from a crystal in space groupP1, with unit-cell parametersa= 51.2,b= 59.7,c= 63.1 Å, α = 80.15, β = 82.98, γ = 89.27°. The structure was solved by SAD phasing using a protein crystal derivatized with mercury in space groupC2, with unit-cell parametersa= 92.7,b = 73.2,c= 56.5 Å, β = 90.28°. MLP comprises a monomer of 12 helices and two short β-strands, with much of the N-terminus composed of loop regions. The crystal structure of MLP reveals no three-dimensional similarity to any known structures and reveals a heretofore unseen fold, supporting the idea that monotremes may be a rich source for the identification of novel proteins. It is hypothesized that MLP in monotreme milk has evolved to specifically support the unusual lactation strategy of this lineage and may have played a central role in the evolution of these mammals.


Author(s):  
P. Dokurno ◽  
R. Trokowski ◽  
B. Kościuszko-Panek ◽  
T. Ossowski ◽  
A. Konitz ◽  
...  

AbstractThe crystal structures of three diaza crowns-18, namely 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (crown 1), 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diacetonitrile (crown 2) and N,N′-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyldi-2,1-ethanediyl)bis-[4-methyl-benzenesulfonamide] (crown 3) have the following space groups and unit cell parameters: crown 1(C


2018 ◽  
Vol 33 (3) ◽  
pp. 216-224 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
A. Y. Chufarov ◽  
N. I. Lobachevskaya ◽  
A. A. Velikodnyi

Polycrystalline samples of Ca2Zn2(V4O14) (I) and Pb2Cd2(V3O10)(VO4) (II) were synthesized using the nitrate–citrate method (I) and conventional solid state reaction (II). The structural refinement based on X-ray powder diffraction data showed that the crystal structure of (I) is characterized by monoclinic symmetry with unit-cell parameters a = 6.8044(1) Å, b = 14.4876(3) Å, c = 11.2367(2) Å, β = 99.647(1)° [space group P21/c (No. 14), Z = 4], and the crystal structure of (II) is triclinic with unit-cell parameters a = 7.03813(6) Å, b = 12.9085(1) Å, c = 6.99961(5) Å, α = 90.7265(5)°, β = 96.3789(5)°, γ = 94.9530(6)°, V = 629.470(8) Å3 [space group P$\bar 1$ (No. 2), Z = 2].


1974 ◽  
Vol 29 (1-2) ◽  
pp. 10-12 ◽  
Author(s):  
Horst Sabrowsky ◽  
Welf Bronger ◽  
Dieter Schmitz

The ternary oxide K2PdO2 has been prepared by a reaction between K2O and PdO. X-ray investigations suggest a chain-structure-type which corresponds to that of K2PtS2. The planar oxygen coordinations of the palladium atoms are connected laterally in one dimension. The orthorhombic unit cell (a = 8.523, b = 6.089, c = 3.119 Å) contains two formula units.


Sign in / Sign up

Export Citation Format

Share Document