scholarly journals The Crystal Structure of Bornite Cu5FeS4: Ordered Fe and Split Cu

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1495
Author(s):  
Zhengxiang Shu ◽  
Can Shen ◽  
Anhuai Lu ◽  
Xiangping Gu ◽  
Zhongfa Liu

The crystal structure of bornite with ideal formula Cu5FeS4 from the Saishitang skarn copper deposit in Qinghai Province, along with bornite from the Yushui spouting hydrothermal copper deposit in Guangdong Province and the Bofang sandstone copper deposit in Hunan Province, has been refined by single-crystal X-ray diffraction with R1 = 0.0259–0.0483 (I > 2σ) and 0.0338–0.1067 for 2732 to 3273 unique reflections. As represented by the Saishitang sample, it is orthorhombic with a Pbca space group and unit cell parameters a = 10.97016(18) Å, b = 21.8803(4) Å, c = 10.9637(2) Å, V = 2631.61(8) Å3 and Z = 16. The structure is composed of sulfur layers parallel to the (0 1 0) lattice plane with interstices occupied by metal atoms. The Fe atoms occupy two tetrahedral sites with full occupancy, but the Cu atoms are all partially distributed over 20 paired sites, split from 10 sites with a distance ranging from 0.24 Å to 0.54 Å. The Fe-S tetrahedra are not split with Fe-S lengths from 2.2609 Å to 2.3286 Å (average 2.2997 Å). The Cu-S lengths in pyramidal triangles are from 2.218 Å to 2.397 Å (average 2.288 Å), whereas the Cu-S tetrahedra are strongly distorted, with great variations in Cu-S lengths from 2.224 Å to 2.604 Å (average 2.391 Å). The orthorhombic unit cell is stacked from 16 1a-type (5.5 Å) cubes; each cube has one tetrahedrally-coordinated Fe atom, five split from 3- to 4-coordinated Cu atoms, and two vacancies, i.e., 5CuIII–IV+FeIV+2[]+4S. The phenomenon of site-splitting of Cu atoms may provide for a more accurate structure of bornite, allowing for a better understanding of its magnetic properties and ore-formation conditions.

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2012 ◽  
Vol 76 (3) ◽  
pp. 443-453 ◽  
Author(s):  
J. Plášil ◽  
K. Fejfarová ◽  
R. Skála ◽  
R. Škoda ◽  
N. Meisser ◽  
...  

AbstractTwo crystals of the uranyl carbonate mineral grimselite, ideally K3Na[(UO2)(CO3)3](H2O), from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO8 polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO8 polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is (K2.43Na0.57)Σ3.00Na[(UO2)(CO3)3](H2O). The unit-cell parameters, refined in space group P2c, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å3 and Z = 2. The crystal structure was refined to R1 = 0.0082 and wR1 = 0.0185 with a GOF = 1.33, based on 626 observed diffraction peaks [Iobs>3σ(I)].


Author(s):  
Sergey Demakov ◽  
Iana Kylosova ◽  
Stepan Stepanov ◽  
Matthias Bönisch

The present work develops a novel unified approach to describe the crystal structure of orthorhombic martensite (α′′) in Ti alloys independent of chemical composition. By employing a straightforward yet highly instructive solid sphere model for the basic tetrahedral structural unit the crystal structures involved in the β ↔ α′′/α′ martensitic transformation are categorized into several intermediate configurations. Importantly, a new metric is introduced, δ, which unambiguously characterizes the atomic positions inside the orthorhombic unit cell depending on unit-cell geometry. Furthermore, the exclusive use of relative quantities to describe unit-cell geometry and atom positions renders the approach developed herein independent of alloy content. In this way, shortcomings of commonly suggested structural metrics for α′′ are eliminated. Subsequently, the novel methodology is applied to analyse and compare the crystal structure of α′′ across a broad range of Ti alloys based on experimentally measured unit-cell parameters. From this analysis it emerges that a large fraction of structural configurations along the b.c.c.–Cmcm–h.c.p. transformation path is not observed in quenched alloys. The threshold between the not-observed and the remaining well observed configurations is identified with an ideal Cmcm crystal structure, relative to which the experimentally found α′′ is compressed along its c axis.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


1996 ◽  
Vol 11 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Nicole M. L. N. P. Closset ◽  
René H. E. van Doorn ◽  
Henk Kruidhof ◽  
Jaap Boeijsma

The crystal structure of La1−xSrxCoO3−δ (0≤x≤0.6) has been studied, using powder X-Ray diffraction. The crystal structure shows a transition from rhombohedral distorted perovskite for LaCoO3−δ into cubic perovskite for La0.4Sr0.6CoO3−δ. The cubic unit cell parameter is ac=3.8342(1) Å for La0.4Sr0.6CoO3−δ, the space group probably being Pm3m. Using a hexagonal setting, the cell parameters for La0.5Sr0.5CoO3−δ, are a=5.4300(3) Å, c=13.2516(10) Å; a=5.4375(1) Å, c=13.2313(4) Å for La0.6Sr0.4CoO3−δ; a=5.4437(1) Å, c=13.2085(5) Å for La0.7Sr0.3CoO3−δ; a=5.4497(2) Å, c=13.1781(6) Å for La0.8Sr0.2CoO3−δ and a=5.4445(2) Å, c=13.0936(6) Å for LaCoO3−δ with the space group probably being R3c.


1994 ◽  
Vol 49 (12) ◽  
pp. 1654-1658 ◽  
Author(s):  
Markus Wieber ◽  
Stefan Lang ◽  
Stefan Rohse ◽  
Ralph Habersack ◽  
Christian Burschka

The synthesis of triphenyltelluroniumsulfide (Ph3TeS)4 is described together with a NMR-spectroscopic characterization. The structure of the title compound was determined by single crystal X-ray diffraction. Crystals of triphenyltelluroniumsulfide are triclinic (space group P1) with the cell parameters a = 1178.0(3) pm. b = 1295.8(6) pm. c = 1298.7(4) pm, α = 77.67(3)°, β = 82.18(2)°, γ = 66.00(2)° (V = 1766(1) × 106 pm3) and Z = 2. The compound appears to form a step-like structure of two [Ph3TeS]2 units and crystallizes with two molecules of CH2Cl2 per unit cell.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


2021 ◽  
Vol 33 (6) ◽  
pp. 717-726
Author(s):  
Daniela Mauro ◽  
Cristian Biagioni ◽  
Federica Zaccarini

Abstract. Gersdorffite, ideally NiAsS, and associated minerals from Contrada Zillì (Peloritani Mountains, Sicily, Italy) have been characterized through electron microprobe analysis and X-ray diffraction. Primary minerals, hosted in quartz veins, are represented by gersdorffite, tetrahedrite-(Fe), and chalcopyrite with minor pyrite and galena. Rare aikinite inclusions were observed in tetrahedrite-(Fe) and chalcopyrite. Gersdorffite occurs as euhedral to subhedral crystals, up to 1 mm in size, with (Sb,Bi)-enriched cores and (Fe,As)-enriched rims. Its chemical composition is (Ni0.79−0.95Fe0.18−0.04Co0.04−0.01)(As0.90−1.03Sb0.10−0.00Bi0.02−0.00)S0.98−0.92. It crystallizes in the space group P213, with unit-cell parameters a=5.6968(7) Å, V=184.88(7) Å3, and Z=4, and its crystal structure was refined down to R1= 0.035. Associated tetrahedrite-(Fe) has chemical formula (Cu5.79Ag0.07)Σ5.86(Cu3.96Fe1.59Zn0.45)Σ6.00(Sb3.95As0.17Bi0.03)Σ4.15S13.06, with unit-cell parameters a= 10.3815(10) Å, V=1118.9(3) Å3, and space group I-43m. Its crystal structure was refined to R1=0.027. Textural and crystallographic data suggest a polyphasic crystallization of gersdorffite under low-temperature conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akhmatkhodja N. Yunuskhodjayev ◽  
Shokhista F. Iskandarova ◽  
Vahobjon Kh. Sabirov

Abstract The crystal structure of a copper(II) complex of protonated sildenafil, CuCl3C22H31N6O4S⋅2H2O was studied by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/n with the unit cell parameters a = 15.4292(2), b = 9.06735(12), c = 21.1752(2) Å, V = 2945.48(7) Å3, Z = 4. The Cu atom is coordinated by the sildenafil ligand via the N2 atom of the pyrazolopyrimidine ring and by three chloride anions. Sildenafil is protonated at the methylated N6 atom of the piperazine ring and it is cation ligand with a 1+ charge.


2011 ◽  
Vol 26 (4) ◽  
pp. 326-330 ◽  
Author(s):  
Sytle M. Antao

The crystal structures of four samples of anhydrite, CaSO4, were obtained by Rietveld refinements using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and space group Amma. As an example, for one sample of anhydrite from Hants County, Nova Scotia, the unit-cell parameters are a = 7.00032(2), b = 6.99234(1), c = 6.24097(1) Å, and V = 305.487(1) Å3 with a > b. The eight-coordinated Ca atom has an average <Ca-O> distance of 2.4667(4) Å. The tetrahedral SO4 group has two independent S-O distances of 1.484(1) to O1 and 1.478(1) Å to O2 and an average <S-O> distance of 1.4810(5) Å. The three independent O-S-O angles [108.99(8) × 1, 110.38(3) × 4, 106.34(9)° × 1; average <O-S-O> [6] = 109.47(2)°] and S-O distances indicate that the geometry of the SO4 group is quite distorted in anhydrite. The four anhydrite samples have structural trends where the a, b, and c unit-cell parameters increase linearly with increasing unit-cell volume, V, and their average <Ca-O> and <S-O> distances are nearly constant. The grand mean <Ca-O> = 2.4660(2) Å, and grand mean <S-O> = 1.4848(3) Å, the latter is longer than 1.480(1) Å in celestite, SrSO4, as expected.


Sign in / Sign up

Export Citation Format

Share Document