scholarly journals 4-Styrylquinolines from cyclocondensation reactions between (2-aminophenyl)chalcones and 1,3-diketones: crystal structures and regiochemistry

2020 ◽  
Vol 76 (9) ◽  
pp. 883-890
Author(s):  
Diego Rodríguez ◽  
Sergio Andrés Guerrero ◽  
Alirio Palma ◽  
Justo Cobo ◽  
Christopher Glidewell

Structures are reported for two matched sets of substituted 4-styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1-(2-aminophenyl)-3-arylprop-2-en-1-ones with 1,3-dicarbonyl compounds. (E)-3-Acetyl-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline, C21H19NO2, (I), (E)-3-acetyl-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline, C20H16BrNO, (II), and (E)-3-acetyl-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C—H...O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C—H...π(arene) hydrogen bond to form a chain of rings; hence, (I)–(III) are not strictly isostructural. By contrast with (I)–(III), no two of ethyl (E)-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline-3-carboxylate, C22H21NO3, (IV), ethyl (E)-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline-3-carboxylate, C21H18BrNO2, (V), and ethyl (E)-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline-3-carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C—H...O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C—H...π(pyridyl) hydrogen bond, while that in (VI) contains two independent C—H...O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.

2015 ◽  
Vol 71 (10) ◽  
pp. 1226-1229
Author(s):  
Kazuma Gotoh ◽  
Yuki Tahara ◽  
Hiroyuki Ishida

Crystal structures of the title compound (systematic name: morpholin-4-ium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate), C4H10NO+·C6HBr2O4−, were determined at three temperatures,viz.130, 145 and 180 K. The asymmetric unit comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are located on inversion centres. The conformations of the two independent bromanilate anions are different from each other with respect to the O—H orientation. In the crystal, the two different anions are linked alternately into a chain along [211] through a short O—H...O hydrogen bond, in which the H atom is disordered over two positions. The refined site-occupancy ratios, which are almost constant in the temperature range studied, are 0.49 (3):0.51 (3), 0.52 (3):0.48 (3) and 0.50 (3):0.50 (3), respectively, at 130, 145 and 180 K, and no significant difference in the molecular geometry and the molecular packing is observed at the three temperatures. The morpholinium cation links adjacent chains of anionsviaN—H...O hydrogen bonds, forming a sheet structure parallel to (-111).


Author(s):  
Daniel E. Vicentes ◽  
Ricaurte Rodríguez ◽  
Justo Cobo ◽  
Christopher Glidewell

The molecules of 3-amino-4-anilino-1H-isochromen-1-one, C15H12N2O2, (I), and 3-amino-4-[methyl(phenyl)amino]-1H-isochromen-1-one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, whereR= H in (I) andR= Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three-centre N—H...(O)2hydrogen bond, one two-centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.


2020 ◽  
Vol 76 (8) ◽  
pp. 1179-1186 ◽  
Author(s):  
Chayanna Harish Chinthal ◽  
Hemmige S. Yathirajan ◽  
Channappa N. Kavitha ◽  
Sabine Foro ◽  
Christopher Glidewell

The structures are reported for five salts formed by reactions between N-(4-fluorophenyl)piperazine and aromatic acids. In 4-(4-fluorophenyl)piperazin-1-ium 2-fluorobenzoate monohydrate, C10H14FN2 +·C7H4FO2 −·H2O, (I), the components are linked by a combination of N—H...O and O—H...O hydrogen bonds to form a chain of alternating R 4 6(12) and R 6 6(16) rings. The ionic components of 4-(4-fluorophenyl)piperazin-1-ium 2-bromobenzoate 0.353-hydrate, C10H14FN2 +·C7H4BrO2 −·0.353H2O, (II), are linked by N—H...O hydrogen bonds to form a centrosymmetric four-ion aggregate containing an R 4 4(12) motif, and these aggregates are linked into a molecular ladder by a single C—H...π(arene) hydrogen bond. 4-(4-Fluorophenyl)piperazin-1-ium 2-iodobenzoate, C10H14FN2 +·C7H4IO2 −, (III), crystallizes with Z′ = 2 in space group P\overline{1}: the four independent ions are linked by N—H...O hydrogen bonds to form a non-centrosymmetric aggregate again containing an R 4 4(12) motif, and aggregates of this type are linked into a ribbon by a combination of C—H...O and C—H...π(arene) hydrogen bonds. The anion in 4-(4-fluorophenyl)piperazin-1-ium 2,4,6-trinitrophenolate, C10H14FN2 +·C6H2N3O7 −, (IV), shows clear evidence of extensive electronic delocalization from the phenolate O atom into the adjacent ring. The ions are linked by a combination of two-centre N—H...O and three-centre N—H...(O)2 hydrogen bonds to form centrosymmetric four-ion aggregates containing three types of ring. The ions in 4-(4-fluorophenyl)piperazin-1-ium 3,5-dinitrobenzoate, C10H14FN2 +·C7H3N2O6 −, (V), are again linked by N—H...O hydrogen bonds to form centrosymmetric R 4 4(12) aggregates, which are themselves linked by a C—H...π(arene) hydrogen bond to form sheets, the stacking of which leads to the formation of narrow channels, containing disordered and/or mobile solvent entities. Comparisons are made with some related structures.


2001 ◽  
Vol 58 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Craig J. Kelly ◽  
Janet M. S. Skakle ◽  
James L. Wardell ◽  
Solange M. S. V. Wardell ◽  
John N. Low ◽  
...  

Molecules of N-(4′-iodophenylsulfonyl)-4-nitroaniline, 4-O2NC6H4NHSO2C6H4I-4′ (1), are linked by three-centre I...O2N interactions into chains and these chains are linked into a three-dimensional framework by C—H...O hydrogen bonds. In the isomeric N-(4′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4NHSO2C6H4NO2-4′ (2), the chains generated by the I...O2N interactions are again linked into a three-dimensional framework by C—H...O hydrogen bonds. Molecules of N,N-bis(3′-nitrophenylsulfonyl)-4-iodoaniline, 4-IC6H4N(SO2C6H4NO2-3′)2 (3), lie across twofold rotation axes in space group C2/c and they are linked into chains by paired I...O=S interactions: these chains are linked into sheets by a C—H...O hydrogen bond, and the sheets are linked into a three-dimensional framework by aromatic π...π stacking interactions. In N-(4′-iodophenylsulfonyl)-3-nitroaniline, 3-O2NC6H4NHSO2C6H4I-4′ (4), there are R^2_2(8) rings formed by hard N—H...O=S hydrogen bonds and R^2_2(24) rings formed by two-centre I...nitro interactions, which together generate a chain of fused rings: the combination of a C—H...O hydrogen bond and aromatic π...π stacking interactions links the chains into sheets. Molecules of N-(4′-iodophenylsulfonyl)-4-methyl-2-nitroaniline, 4-CH3-2-O2NC6H3NHSO2C6H4I-4′ (5), are linked by N—H...O=S and C—H...O(nitro) hydrogen bonds into a chain containing alternating R^2_2(8) and R^2_2(10) rings, but there are no I...O interactions of either type. There are two molecules in the asymmetric unit of N-(4′-iodophenylsulfonyl)-2-nitroaniline, 2-O2NC6H4NHSO2C6H4I-4′ (6), and the combination of an I...O=S interaction and a hard N—H...O(nitro) hydrogen bond links the two types of molecule to form a cyclic, centrosymmetric four-component aggregate. C—H...O hydrogen bonds link these four-molecule aggregates to form a molecular ladder. Comparisons are made with structures retrieved from the Cambridge Structural Database.


Author(s):  
Ligia R. Gomes ◽  
John Nicolson Low ◽  
Catarina Oliveira ◽  
Fernando Cagide ◽  
Fernanda Borges

The crystal structures of three benzamide derivatives,viz. N-(6-hydroxyhexyl)-3,4,5-trimethoxybenzamide, C16H25NO5, (1),N-(6-anilinohexyl)-3,4,5-trimethoxybenzamide, C22H30N2O4, (2), andN-(6,6-diethoxyhexyl)-3,4,5-trimethoxybenzamide, C20H33NO6, (3), are described. These compounds differ only in the substituent at the end of the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the molecules. In each molecule, them-methoxy substituents are virtually coplanar with the benzyl ring, while thep-methoxy substituent is almost perpendicular. The carbonyl O atom of the amide rotamer istransrelated with the amidic H atom. In each structure, the benzamide N—H donor group and O acceptor atoms link the molecules intoC(4) chains. In1, a terminal –OH group links the molecules into aC(3) chain and the combined effect of theC(4) andC(3) chains is a ribbon made up of screw relatedR22(17) rings in which the ...O—H... chain lies in the centre of the ribbon and the trimethoxybenzyl groups forms the edges. In2, the combination of the benzamideC(4) chain and the hydrogen bond formed by the terminal N—H group to an O atom of the 4-methoxy group link the molecules into a chain ofR22(17) rings. In3, the molecules are linked only byC(4) chains.


2013 ◽  
Vol 69 (12) ◽  
pp. o1781-o1781 ◽  
Author(s):  
M. Umadevi ◽  
V. Saravanan ◽  
R. Yamuna ◽  
A. K. Mohanakrishnan ◽  
G. Chakkaravarthi

In the title compound, C18H16ClNO2S, the indole ring system forms a dihedral angle of 75.07 (8)° with the phenyl ring. The molecular structure is stabilized by a weak intramolecular C—H...O hydrogen bond. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming a chain along [10-1]. C—H...π interactions are also observed, leading to a three-dimensional network.


2016 ◽  
Vol 31 (2) ◽  
pp. 97-103 ◽  
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of rivastigmine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rivastigmine hydrogen tartrate crystallizes in space group P21 (#4) with a = 17.538 34(5), b = 8.326 89(2), c = 7.261 11(2) Å, β = 98.7999(2)°, V = 1047.929(4) Å3, and Z = 2. The un-ionized end of the hydrogen tartrate anions forms a very strong hydrogen bond with the ionized end of another anion to form a chain. The ammonium group of the rivastigmine cation forms a strong discrete hydrogen bond with the carbonyl oxygen atom of the un-ionized end of the tartrate anion. These hydrogen bonds form a corrugated network in the bc-plane. Both hydroxyl groups of the tartrate anion form intramolecular O–H⋯O hydrogen bonds. Several C–H⋯O hydrogen bonds appear to contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1501.


2002 ◽  
Vol 57 (8) ◽  
pp. 914-921 ◽  
Author(s):  
P. G. Jones ◽  
J. Ossowski ◽  
P. Kus

N,N′-Dibutyl-terephthaldiamide (1), N,N′-dihexyl-terephthaldiamide (2), N,N′-di(tert-butyl)- terephthaldiamide (3), N,N,N′,N′-tetrabutyl-terephthaldiamide (4), 1,1′-terephthaloylbis- pyrrolidine (5), 1,1′-terephthaloyl-bis-piperidine (6), and 4,4′-terephthaloyl-bis-morpholine (7) have been synthesised and physicochemically characterised. The X-ray structure determinations reveal imposed inversion symmetry for compounds 1-6; compound 3 has two independent molecules with inversion symmetry in the asymmetric unit. Compounds 1-3 form classical hydrogen bonds of the type N-H···O=C, leading to a ribbon-like arrangement of molecules (1 and 2) or a layer structure (3). Compound 3 also displays a very short C-H···O interaction, a type of hydrogen bond that is also observed in compounds 4-7, which lack classical donors; thereby compounds 4-6 form layer structures and 7 a complex threedimensional network.


2004 ◽  
Vol 59 (11-12) ◽  
pp. 1429-1437 ◽  
Author(s):  
Friedrichsa Friedrichsa ◽  
Peter G. Jones

Three structures of the form bis(thione)gold(I) di(methanesulfonyl)amide [thione = imidazolidine- 2-thione, 1; 1-methyl-imidazolidine-2-thione, 2; thiazolidine-2-thione, 3] were determined; all crystallize with one formula unit in the asymmetric unit. Each N-H hydrogen bond donor forms one classical two-centre hydrogen bond with an anion acceptor. Compound 1 thereby forms a complex layer structure with a layer thickness of 10.17 Å ; the packing may be analysed in terms of thinner subunit layers consisting of interlinked, hydrogen-bonded chains and rings. Compound 2 forms a chain structure consisting of a series of “hairpin bends”, a common feature in the gold complexes of 1-alkyl-imidazolidine-2-thiones. Compound 3 forms a corrugated ribbon structure in which the central region consists of parallel S-Au-S axes linked by aurophilic interactions; the anions exercise a “clamping” function by forming hydrogen bonds at the periphery of the ribbons. Further short contacts can be classed as weak hydrogen bonds C-H ··· X, with X = N, O, S or Au.


2010 ◽  
Vol 65 (11) ◽  
pp. 1363-1371 ◽  
Author(s):  
Christoph Wölper ◽  
Alejandra Rodríguez-Gimeno ◽  
Katherine Chulvi Iborra ◽  
Peter G. Jones ◽  
Armand Blaschette

Co-crystallization of N-methyl-substituted ureas with di(organosulfonyl)amines, (RSO2)2NH, leads unpredictably to either molecular co-crystals or, via proton transfer, to uronium salts. As a sequel to former reports, this communication describes the formation and the crystal structures of the new ionic compounds 1,1-dimethyluronium di(4-fluorobenzenesulfonyl)amide (1, monoclinic, space group P21/c, Z´ = 1) and di(1-methylurea)hydrogen(I) di(4-fluorobenzenesulfonyl)amide (2, triclinic, P1̄, Z´ = 1); both salts were obtained from dichloromethane/petroleum ether. In the structure of 2, the urea moieties of the cationic homoconjugate are connected by a very short [O-H· · ·O]+ hydrogen bond [d(O· · ·O) = 244.6(2) pm, θ (O-H· · ·O)≈170°, bridging H atom asymmetrically disordered over two positions]. The O-protonation induces a specific elongation of the C-O bond lengths to 131.2(2) pm in 1 or 129.5(2) and 127.4(2) pm in 2, as compared to literature data of ca. 126 pm for the unprotonated ureas. Both crystal structures are dominated by conventional two- and threecentre hydrogen bonds, which involve the OH and all NH donors and give rise to one-dimensional cation-anion arrays. In particular, the ionic entities of 1 are alternatingly associated into simple chains propagated by glide-plane operations parallel to the c axis, whereas the donor-richer structure of 2 displays inversion symmetric dimers of formula units, which are further hydrogen-bonded into strands propagated by translation parallel to the a axis.


Sign in / Sign up

Export Citation Format

Share Document