Influence of protonation on the geometry of 2-{[(2,6-dimethylphenoxy)ethyl]amino}-1-phenylethan-1-ol: crystal structures of the free base and of its chloride and 3-hydroxybenzoate salt forms

Author(s):  
Wojciech Nitek ◽  
Agnieszka Kania ◽  
Henryk Marona ◽  
Anna M. Waszkielewicz ◽  
Ewa Żesławska

The aroxyalkylaminoalcohol derivatives are a group of compounds known for their pharmacological action. The crystal structures of four new xylenoxyaminoalcohol derivatives having anticonvulsant activity are reported, namely, 2-{[2-(2,6-dimethylphenoxy)ethyl]amino}-1-phenylethan-1-ol, C18H23NO2, 1, the salt N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxy-1-phenylethan-2-aminium 3-hydroxybenzoate, C18H24NO2 +·C7H5O3 −, 2, and two polymorphs of the salt (R)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxy-1-phenylethan-2-aminium chloride, C18H24NO2 +·Cl−, 3 and 3p. Both polymorphs crystallize in the space group P21212 and each has two cations and two anions in the asymmetric unit (Z′ = 2). The molecules in the polymorphs show differences in their molecular conformations and intermolecular interactions. The crystal packing of neutral 1 is dominated by intermolecular O—H...N hydrogen bonds, resulting in the formation of one-dimensional chains. In the crystal structures of the salt forms (2, 3 and 3p), each protonated N atom is engaged in a charge-assisted hydrogen bond with the corresponding anion. The protonation of the N atom also influences the conformation of the molecular linker between the two aromatic rings and changes the orientation of the rings. The crystal packing of the salt forms is dominated by intermolecular O—H...O hydrogen bonds, resulting in the creation of chains and rings. Structural studies have been enriched by the calculation of Hirshfeld surfaces and the corresponding fingerprint plots.

2021 ◽  
Vol 77 (4) ◽  
pp. 186-196
Author(s):  
Negin Lal Zakaria ◽  
Mehrdad Pourayoubi ◽  
Mahsa Eghbali Toularoud ◽  
Michal Dušek ◽  
Eliska Skorepova

The crystal structures of two single-enantiomer amidophosphoesters with an (O)2P(O)(N) skeleton and one single-enantiomer phosphoric triamide with an (N)2P(O)(N) skeleton were studied. The compounds are diphenyl [(R)-(+)-α-4-dimethylbenzylamido]phosphate, (I), and diphenyl [(S)-(−)-α-4-dimethylbenzylamido]phosphate, (II), both C21H22NO3P, and N-(2,6-difluorobenzoyl)-N′,N′′-bis[(R)-(+)-α-ethylbenzyl]phosphoric triamide, C25H28F2N3O2P, (III). The asymmetric units contain two amidophosphoester molecules for (I) and (II), and one phosphoric triamide molecule for (III). In the crystal structures of (I) and (II), molecules are assembled in a similar one-dimensional chiral ribbon architecture, but with almost a mirror-image relationship with respect to each other through N—H...O(P) and C—H...O(P) hydrogen bonds along [010]. In the crystal structure of (III), the chiral tape architecture along [100] is mediated by N—H...O(P) and N—H...O(C) hydrogen bonds, and the tapes are connected into slabs by C—H...O interactions (along the ab plane). The differences/similarities of the two diastereotopic phenoxy groups in (I)/(II) and the two chiral amine fragments in (III) were studied on the grounds of geometry, conformation and contribution to the crystal packing, as well as 1H and 13C signals in a solution NMR study.


Author(s):  
K. Shakuntala ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan

The crystal structures of three isomeric compounds of formula C14H13Cl2NO2S, namely 3,5-dichloro-N-(2,3-dimethylphenyl)-benzenesulfonamide (I), 3,5-dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide (II) and 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide (III) are described. The molecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The molecular conformation of (II) is stabilized by intramolecular C—H...O hydrogen bonds and C—H...π interactions. The crystal structure of (I) features N—H...O hydrogen-bondedR22(8) loops interconnectedvia C(7) chains of C—H...O interactions, forming a three-dimensional architecture. The structure also features π–π interactions [Cg...Cg= 3.6970 (14) Å]. In (II), N—H...O hydrogen-bondedR22(8) loops are interconnectedviaπ–π interactions [intercentroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to theaaxis. In (III), adjacentC(4) chains of N—H...O hydrogen-bonded molecules running parallel to [010] are connectedviaC—H...π interactions, forming sheets parallel to theabplane. Neighbouring sheets are linkedviaoffset π–π interactions [intercentroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.


2015 ◽  
Vol 71 (11) ◽  
pp. 1388-1391
Author(s):  
Vinola Z. Rodrigues ◽  
C. P. Preema ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan

Crystal structures of twoN-(aryl)arylsulfonamides, namely, 4-methoxy-N-(4-methylphenyl)benzenesulfonamide, C14H15NO3S, (I), andN-(4-fluorophenyl)-4-methoxybenzenesulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzenesulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N—H...O hydrogen bonds form infiniteC(4) chains extended in [010], and intermolecular C—H...πarylinteractions link these chains into layers parallel to theabplane. The crystal structure of (II) features N—H...O hydrogen bonds forming infinite one dimensionalC(4) chains along [001]. Further, a pair of C—H...O intermolecular interactions consolidate the crystal packing of (II) into a three-dimensional supramolecular architecture.


2018 ◽  
Vol 233 (11) ◽  
pp. 761-780 ◽  
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Alan B. Turner ◽  
Graeme J.R. Watson ◽  
Thomas C. Baddeley ◽  
...  

Abstract Crystal structures and Hirshfeld surface analysis are reported of seven aryl-CO–CH2CH2COCH2CH2CO2H derivatives, namely aryl=4-ClC6H4, 1: 2-HOC6H4, 2: (2,4-(MeO)2C6H3, 3: 3,5-Me2-4-MeOC6H2, 4: 4-MeC6H4, 5: C6H5, 6: 2,4-(HO)2C6H3, 7. There are significant differences in their molecular conformations and their crystal packing. Within the group of compounds, three different types of carboxylic acid intermolecular interactions are exhibited, all involving O–H···O hydrogen bonds. These three types are (i) symmetric R22(8) dimers formed from pairs of O–H···O hydrogen bonds in compounds 1–5, (ii) infinite 1D homo-assemblies of carboxylic groups (homo-AA,A catemers), and (iii), a 3-D array, in which there are no direct carboxylic acid–carboxylic acid interactions, generated from O–H···O interactions of each carboxylic acid group with the hydroxyl and carbonyl groups of other molecules in 7. Each of the carboxylic acid groups in the catemer exhibit anti arrangements with all the carboxylic acid oxygen atoms lying in a plane. Disorder is exhibited in the carboxylic acid groups in 2 and 6. With the variety of oxygen substituents present in 1–7, a large number of O–H···O and C–H···O hydrogen bonds are exhibited, resulting in all cases in three dimension assemblies. In 1–5, interlayer contacts between the carboxylic acid R22(8) dimers in rows, with differing sets of weaker C–H···O and/or C–H···π interactions, result in the formation of two-molecular wide columns and/or infinite sheets. While column and sheet sub structures can also be designated in compound 6, on linking the carboxylic acid groups with other substituents via C–H···O, C–H···π and C=O···π interactions, these differ from those in 1–5 due to the different arrangements of the CO2H groups.


Author(s):  
Luis F. B. Osorio ◽  
Samir A. Carvalho ◽  
Edson F. da Silva ◽  
Carlos A. M. Fraga ◽  
Solange M. S. V. Wardell ◽  
...  

The crystal structures of (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehydeO-benzyloxime, C12H12N4O3, (I), (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehydeO-(4-fluorobenzyl) oxime, C12H11FN4O3, (II), and (E)-1-methyl-5-nitro-1H-imidazole-2-carbaldehydeO-(4-bromobenzyl) oxime, C12H11BrN4O3, (III), are described. The dihedral angle between the ring systems in (I) is 49.66 (5)° and the linking Nm—C—C=N (m = methylated) bond shows ananticonformation [torsion angle = 175.00 (15)°]. Compounds (II) and (III) are isostructural [dihedral angle between the aromatic rings = 8.31 (5)° in (II) and 5.34 (15)° in (III)] and differ from (I) in showing a near-synconformation for the Nm—C—C=N linker [torsion angles for (II) and (III) = 17.64 (18) and 8.7 (5)°, respectively], which allows for the occurrence of a short intramolecular C—H...N contact. In the crystal of (I), C—H...N hydrogen bonds link the molecules into [010] chains, which are cross-linked by very weak C—H...O bonds into (100) sheets. Weak aromatic π–π stacking interactions occur between the sheets. The extended structures of (II) and (III) feature several C—H...N and C—H...O hydrogen bonds, which link the molecules into three-dimensional networks, which are consolidated by aromatic π–π stacking interactions. Conformational energy calculations and Hirshfeld fingerprint analyses for (I), (II) and (III) are presented and discussed.


2012 ◽  
Vol 68 (6) ◽  
pp. o1816-o1816
Author(s):  
Ji-Lai Liu ◽  
Ming-Hui Sun ◽  
Jing-Jun Ma

The title compound, C15H14N2O2, was obtained from the reaction of 3-hydroxybenzaldhyde and 4-methylbenzohydrazide in methanol. In the molecule, the benzene rings form a dihedral angle of 2.9 (3)°. In the crystal, N—H...O and O—H...O hydrogen bonds link the molecules into layers parallel to (101). The crystal packing also exhibits π–π interactions between the aromatic rings [centroid–centroid distance = 3.686 (4) Å].


2017 ◽  
Vol 73 (10) ◽  
pp. 1483-1487
Author(s):  
P. Sivakumar ◽  
S. Israel ◽  
G. Chakkaravarthi

The title salt (I), C6H8N+·C20H17O8−, comprises a 2-methylpyridinium cation and a 2,3-bis(4-methylbenzoyloxy)succinate mono-anion while the salt (II), 2C6H8N+·2C20H17O8−·5H2O, consists of a pair of 4-methylpyridinium cations and 2,3-bis(4-methylbenzoyloxy)succinate mono-anions and five water molecules of solvation in the asymmetric unit. In (I), the dihedral angle between the aromatic rings of the anion is 40.41 (15)°, comparing with 43.0 (3) and 85.7 (2)° in the conformationally dissimilar anion molecules in (II). The pyridine ring of the cation in (I) is inclined at 23.64 (16) and 42.69 (17)° to the two benzene moieties of the anion. In (II), these comparative values are 4.7 (3), 43.5 (3)° and 43.5 (3), 73.1 (3)° for the two associated cation and anion pairs. The crystal packing of (I) is stabilized by inter-ionic N—H...O, O—H...O and C—H...O hydrogen bonds as well as weak C—H...π interactions, linking the ions into infinite chains along [100]. In the crystal packing of (II), the anions and cations are also linked by N—H...O and O—H...O hydrogen bonds involving also the water molecules, giving a two-dimensional network across (001). The crystal structure is also stabilized by weak C—H...O and C—H...π interactions.


2006 ◽  
Vol 62 (7) ◽  
pp. o3026-o3027 ◽  
Author(s):  
Hong-Mei Xu ◽  
Shi-Xiong Liu

The molecule of the title compound, C14H11N3O5, is approximately planar, the dihedral angles between the two aromatic rings being 4.63 (7)°. O—H...N, N—H...O and O—H...O hydrogen bonds and π–π stacking interactions help to consolidate the crystal packing.


2010 ◽  
Vol 65 (11) ◽  
pp. 1363-1371 ◽  
Author(s):  
Christoph Wölper ◽  
Alejandra Rodríguez-Gimeno ◽  
Katherine Chulvi Iborra ◽  
Peter G. Jones ◽  
Armand Blaschette

Co-crystallization of N-methyl-substituted ureas with di(organosulfonyl)amines, (RSO2)2NH, leads unpredictably to either molecular co-crystals or, via proton transfer, to uronium salts. As a sequel to former reports, this communication describes the formation and the crystal structures of the new ionic compounds 1,1-dimethyluronium di(4-fluorobenzenesulfonyl)amide (1, monoclinic, space group P21/c, Z´ = 1) and di(1-methylurea)hydrogen(I) di(4-fluorobenzenesulfonyl)amide (2, triclinic, P1̄, Z´ = 1); both salts were obtained from dichloromethane/petroleum ether. In the structure of 2, the urea moieties of the cationic homoconjugate are connected by a very short [O-H· · ·O]+ hydrogen bond [d(O· · ·O) = 244.6(2) pm, θ (O-H· · ·O)≈170°, bridging H atom asymmetrically disordered over two positions]. The O-protonation induces a specific elongation of the C-O bond lengths to 131.2(2) pm in 1 or 129.5(2) and 127.4(2) pm in 2, as compared to literature data of ca. 126 pm for the unprotonated ureas. Both crystal structures are dominated by conventional two- and threecentre hydrogen bonds, which involve the OH and all NH donors and give rise to one-dimensional cation-anion arrays. In particular, the ionic entities of 1 are alternatingly associated into simple chains propagated by glide-plane operations parallel to the c axis, whereas the donor-richer structure of 2 displays inversion symmetric dimers of formula units, which are further hydrogen-bonded into strands propagated by translation parallel to the a axis.


2013 ◽  
Vol 69 (12) ◽  
pp. 1549-1552 ◽  
Author(s):  
Vladimir V. Chernyshev ◽  
Sergey Y. Efimov ◽  
Ksenia A. Paseshnichenko ◽  
Andrey A. Shiryaev

The title salt, C8H12NO+·C7H10NO5−, crystallizes in two polymorphic modifications,viz.monoclinic (M) and orthorhombic (O). The crystal structures of both polymorphic modifications have been established from laboratory powder diffraction data. The crystal packing motifs in the two polymorphs are different, but the conformations of the anions are generally similar. InM, the anions are linked by pairs of hydrogen bonds of the N—H...O and O—H...O types into chains along theb-axis direction, and neighbouring molecules within the chain are related by the 21screw axis. The cations link these chainsviaO—H...O and N—H...O hydrogen bonds into layers parallel to (001). InO, the anions are linked by O—H...O hydrogen bonds into helices along [001], and neighbouring molecules within the helix are related by the 21screw axis. The neighbouring helical turns are linked by N—H...O hydrogen bonds. The cations link the helicesviaO—H...O and N—H...O hydrogen bonds, thus forming a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document