scholarly journals AMi: a GUI-based, open-source system for imaging samples in multi-well plates

Author(s):  
Andrew Bohm

Described here are instructions for building and using an inexpensive automated microscope (AMi) that has been specifically designed for viewing and imaging the contents of multi-well plates. The X, Y, Z translation stage is controlled through dedicated software (AMiGUI) that is being made freely available. Movements are controlled by an Arduino-based board running grbl, and the graphical user interface and image acquisition are controlled via a Raspberry Pi microcomputer running Python. Images can be written to the Raspberry Pi or to a remote disk. Plates with multiple sample wells at each row/column position are supported, and a script file for automated z-stack depth-of-field enhancement is written along with the images. The graphical user interface and real-time imaging also make it easy to manually inspect and capture images of individual samples.

2019 ◽  
Vol 24 (4) ◽  
pp. 399-407 ◽  
Author(s):  
Pierre Baillargeon ◽  
Kervin Coss-Flores ◽  
Fakhar Singhera ◽  
Justin Shumate ◽  
Hannah Williams ◽  
...  

Microplates are an essential tool used in laboratories for storing research materials and performing assays. Many types of laboratory automation exist that greatly reduce the effort needed to utilize microplates; however, there are cases where the use of such automation is not feasible or practical. In these instances, researchers must work in an environment where liquid handling operations are performed manually with handheld pipetting devices. This type of work is tedious and error-prone as it relies on researchers to manually track a significant amount of metadata, including transfer volumes, plate barcodes, well contents, and well locations. To address this challenge, we have developed an open-source, semiautomated benchtop system that facilitates manual pipetting using visual indicators. This device streamlines the process of identifying the location of wells so that the researcher can perform manual transfers in a more efficient, reliable, and accurate manner. This system utilizes a graphical user interface that allows the user to load worklists and then issues commands to illuminate wells of interest, providing a visual indicator for users to follow in real time. The software and hardware tools utilized for development, along with the implementation techniques used to produce this system, are described within.


2009 ◽  
pp. 211-218
Author(s):  
Wenbing Zhao

For all e-collaboration systems, some degree of concurrency control is needed so that two people do not step on each other’s foot. The demand for good concurrency control is especially high for the tightly coupled, real-time e-collaboration systems. Such systems require quick responses to user’s actions, and typically require a WYSIWIS (what you see is what I see) graphical user interface (Ellis, Gibbs, & Rein, 1991). This requirement, together with the fact that users are often separated geographically across wide-area networks, favors a decentralized system design where the system state is replicated at each user’s site. This places further challenges on the design of concurrency control for these systems.


Author(s):  
Divyesh Patel ◽  
Arpita Shah ◽  
Hetal Shah

This paper aims to build up a model for an online remote gas and temperature checking device for worker’s safety in sewage pipelines. The device is WSN based microcontroller equipped with analog and digital sensor. The design included several units mainly: Arduino Microcontroller MQ-135, DHT11, Gas and Temperature Sensors, and the current regulator circuit. The sensors are connected with a microcontroller through an ADC for advanced flag change and information logging. An LCD show is likewise associated with the microcontroller to show the estimations. For examination and filing purposes, the information can be exchanged to a PC with a graphical UI program through a USB interface. The device displays toxic gas and workers real-time position, transmit information remotely via a graphical user interface to IBM bluemix provide adjacent help. By keeps observing, this model will prone to diminish mishaps and slowly spares an existence. The model has numerous points of interest when contrasted with other checking frameworks as far as its littler size, gigantic memory limits, on-gadget show, bring down cost and more noteworthy versatility.


2013 ◽  
Vol 11 (2) ◽  
pp. 2250-2255 ◽  
Author(s):  
Chaitanya Bysani ◽  
T. S. Rama Krishna Prasad ◽  
Sridhar Chundi

The objective of this paper is to create a low cost commercial off the shelf data analyzer for improving automotive safety and design a user interface infotainment system by using Raspberry Pi.  In this paper we propose Raspberry pi based application that monitor the vehicle ECUs through an OBD-II(On Board Diagnostics) interface, perform Diagnostics with DTCs (Diagnostics trouble codes). Infotainment system having functions such as audio and video playback, games, internet connectivity through either USB Wi-Fi dongles or USB Modems and dashboard camera operation. Raspberry Pi will transmit the data over Wi-Fi in real-time in xml format over Wi-Fi on a DHCP connected network.


2020 ◽  
Vol 245 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Jeesu Kim ◽  
Eun-Yeong Park ◽  
Byullee Park ◽  
Wonseok Choi ◽  
Ki J Lee ◽  
...  

Photoacoustic imaging is a non-invasive and non-ionizing biomedical technique that has been investigated widely for various clinical applications. By taking the advantages of conventional ultrasound imaging, hand-held operation with a linear array transducer should be favorable for successful clinical translation of photoacoustic imaging. In this paper, we present new key updates contributed to the previously developed real-time clinical photoacoustic and ultrasound imaging system for improving the clinical usability of the system. We developed a seamless image optimization platform, designed a real-time parameter control software with a user-friendly graphical user interface, performed Monte Carlo simulation of the optical fluence in the imaging plane, and optimized the geometry of the imaging probe. The updated system allows optimizing of all imaging parameters while continuously acquiring the photoacoustic and ultrasound images in real-time. The updated system has great potential to be used in a variety of clinical applications such as assessing the malignancy of thyroid cancer, breast cancer, and melanoma. Impact statement Photoacoustic imaging is a promising biomedical imaging modality that can visualize both structural and functional information of biological tissue. Because of its easiness to be integrated with conventional ultrasound imaging systems, numerous studies have been conducted to develop and apply clinical photoacoustic imaging systems. However, most of the systems were not suitable for general-purpose clinical applications due to one of the following reasons: target specific design, immobility, inaccessible operation sequence, and lack of hand-held operation. This study demonstrates a real-time clinical photoacoustic and ultrasound imaging system, which can overcome the limitations of the previous systems for successful clinical translation.


Sign in / Sign up

Export Citation Format

Share Document