scholarly journals Multi-k magnetic order in Ca3CuNi2(PO4)4: irrep approach and Shubnikov symmetry

2014 ◽  
Vol 70 (a1) ◽  
pp. C1458-C1458
Author(s):  
Vladimir Pomjakushin

The multi-k magnetic structures with propagation vectors k being the arms of the propagation vector star rarely can be justified experimentally. We show that the antiferromagnetic structure in the low dimensional quantum spin trimer system Ca3CuNi2(PO4)4 is based on the full star of propagation vector k=[1/2,1/2,0] of the paramagnetic space group C2/c. The relation between representation analysis in the propagation vector formalism and Shubnikov magnetic space group (MSG) symmetry is examined in details. A symmetry restrictive MSG that excellently fits the experimental data can be constructed only with the use of the full star. The magnetic structure is further supported by the calculations of the spin expectation values of the isolated Ni-Cu-Ni trimer with realistic Hamiltonian.

2016 ◽  
Vol 1 (1) ◽  
pp. 135
Author(s):  
M.A. Semkin ◽  
N.V. Urusova ◽  
D.G. Kellerman ◽  
A.P. Nosov ◽  
S. Lee ◽  
...  

<p>We studied crystal and magnetic structures of some composite and single-phase multiferroics: (<em>x</em>)MFe<sub>2</sub>O<sub>4</sub> + (1-<em>x</em>)BaTiO<sub>3</sub>, Ni<sub>3-<em>y</em></sub>Co<em><sub>y</sub></em>V<sub>2</sub>O<sub>8</sub>, and Bi<sub>0.9</sub>Ba<sub>0.1</sub>Fe<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>3</sub>. Composite multiferroics (<em>x</em>)MFe<sub>2</sub>O<sub>4</sub> + (1-<em>x</em>)BaTiO<sub>3</sub> with <em>x</em> = (0.2; 0.3; 0.4) and M = (Ni, Co) have ferrimagnetic structure, which is described by the propagation vector <strong><em>k</em></strong> = 0. Oxides Ni<sub>3-<em>y</em></sub>Co<em><sub>y</sub></em>V<sub>2</sub>O<sub>8</sub> with <em>y</em> = (0.1; 0.3; 0.5) possess a modulated magnetic structure, described by the vector <strong><em>k</em></strong> = (δ, 0, 0), where δ = 0.283 and 0.348 at 7.4 K for <em>y</em> = 0.1 and 0.5, respectively. In the Bi<sub>0.9</sub>Ba<sub>0.1</sub>Fe<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>3</sub> multiferroic a magnetic order is destroyed at 600 K and the Fe-ion magnetic moment decreases from µ = 3.46(5) μ<sub>B</sub> at 300 K to zero at 600 K.</p>


2014 ◽  
Vol 70 (a1) ◽  
pp. C518-C518
Author(s):  
Brian VanLeeuwen ◽  
Mantao Huang ◽  
Daniel Litvin ◽  
Venkatraman Gopalan

This work follows from the recent introduction of the rotation-reversal operation intended to be analogous to the time-reversal operation used to describe the symmetry of magnetic structures. As a second independent antisymmetry operation, this operation "doubles" the antisymmetry of the magnetic space groups, hence the term double antisymmetry. Supposing the consideration of both rotation-reversal and time-reversal symmetry, it was found that there are 17,803 types of symmetry that a crystal could exhibit; the 1,651 magnetic space group types being a subset of these, just as the 230 crystallographic space group types are a subset of the magnetic space group types. In addition to discussing the methods applied to determine these types, describing their properties, and listing their symmetry diagrams (available online), the implications for symmetry constraints in magnetic structure determination will be explored.


2019 ◽  
Vol 289 ◽  
pp. 156-163
Author(s):  
Andrzej Szytuła ◽  
Stanislav Baran ◽  
Bogusław Penc ◽  
Andreas Hoser ◽  
Vladimir Dyakonov

The work reports the results of neutron diffraction measurements of NiMnGe:T systems where T is Cr or Ti. All investigated compounds have the helicoidal magnetic structure with the propagation vector k = (ka,0,0). The values of the ka component decrease with increasing Cr content and increase with increasing Ti content. For all compounds, except the sample with x = 0.18 in Cr-system, the helicoidal order is stable up to the Néel temperature. The obtained data are analysed based on simple model in which the magnetic interactions are described by two exchange integrals J1 > 0 for first and J2 < 0 for second neighbouring moments. This model clears up different dependence of ka component in different systems.


1972 ◽  
Vol 50 (24) ◽  
pp. 3079-3084 ◽  
Author(s):  
J. A. R. Stiles ◽  
C. V. Stager

The magnetic structures of antiferromagnetic manganese pyrophosphate and copper pyrophosphate have been determined by single crystal neutron diffraction techniques. There have been two previous determinations of the structure of manganese pyrophosphate. The discrepancy between these results is explained by postulating a crystallographic phase transition.


2003 ◽  
pp. 95-112 ◽  
Author(s):  
Markus Grüninger ◽  
Marco Windt ◽  
Eva Benckiser ◽  
Tamara S. Nunner ◽  
Kai P. Schmidt ◽  
...  

1958 ◽  
Vol 112 (6) ◽  
pp. 1917-1923 ◽  
Author(s):  
G. Donnay ◽  
L. M. Corliss ◽  
J. D. H. Donnay ◽  
N. Elliott ◽  
J. M. Hastings

2008 ◽  
Vol 53 (2) ◽  
pp. 732-736
Author(s):  
Raoul Dillenschneider ◽  
Jung Hoon Kim ◽  
Jung Hoon Han

Sign in / Sign up

Export Citation Format

Share Document