scholarly journals Anisotropic resistivity tensor of melt-cast Bi2212 superconductors from QTA

2014 ◽  
Vol 70 (a1) ◽  
pp. C726-C726
Author(s):  
Aline Dellicour ◽  
Alain Pautrat ◽  
Bénédicte Vertruyen ◽  
Mark Rikel ◽  
Luca Lutterotti ◽  
...  

Bi2Sr2CaCu2O8+δ HTSC superconductor is characterized by a very strong normal-state resistivity anisotropy, with ρc/ρab typically above 10E4. The aim of this study is to use Quantitative Texture Analysis from x-ray diffraction measurements to estimate the orientation effect on the anisotropic macroscopic resistivity in melt-cast bulk Bi2Sr2CaCu2O8+δ superconductors. Our approach uses the geometric mean [1] of the single crystal resistivity tensor weighted by the Orientation Distribution Function (ODF) to quantitatively estimate the macroscopic resistivity tensor of the samples. The ODF is obtained from x-ray Combined Analysis [2], using the E-WIMV algorithm of the MAUD software. The GMA applies to the rank-two resistivity tensor of the orthorhombic space group considered tetragonal due to the small difference of a- and b-axes of the phase, with only two independent tensor components. We relate a relatively good agreement between measured and calculated macroscopic anisotropic resistivity ratios. Even with ρc/ρab between 10E4 and 10E5 for Bi2212 at room temperature in single crystals [3], we experiment macroscopic ratio in our bulk samples of around only 2. This small ratio is explained by the weak planar- or fiber-like (Figure) texture achieved in the melt-cast samples, characterized by maxima of orientation distributions not larger than 10 mrd. Calculated resistivities, based on homogeneous crystallites, perfect grain boundaries and no secondary phases, are 10 times larger than the observed ones. This suggests that the observed minor phases positively affect conductive pathways between grains. Calculated and measured anisotropic resistive ratios are coherent with one another, and Combined Analysis gives good predictions of these former.

Clay Minerals ◽  
1966 ◽  
Vol 6 (3) ◽  
pp. 127-142 ◽  
Author(s):  
R.M. Taylor ◽  
K. Norrish

AbstractUsing X-ray techniques, the orientation distributions of crystal planes in laboratory prepared and naturally occurring aggregates were measured. A small specimen was mounted on the axis of a goniometer and the diffracted intensity measured as the specimen was rotated. Mo radiation was used to reduce the absorption effects. A mathematical relation between the distribution of particles and the distribution of crystal planes was derived for platy and fibrous particles in flake-like and rod-shaped specimens.When diffracted intensities of the 001 reflection of several different kaolinites were corrected for the degree of orientation in the respective specimens, a constant value was obtained. This would enable quantitative diffraction analyses to be made without the large errors that can be introduced by orientation effects. The degree of particle orientation achieved appeared to be more dependent on particle morphology than on the method of sample preparation or formation.


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


2019 ◽  
Vol 57 (5) ◽  
pp. 647-662
Author(s):  
Sabina Kovač ◽  
Predrag Dabić ◽  
Aleksandar Kremenović ◽  
Aleksandar Pačevski ◽  
Ljiiljana Karanović ◽  
...  

Abstract The crystal structure of cosalite from the Trepča orefield was refined in the orthorhombic space group Pnma [a = 23.7878 (9), b = 4.0566 (3), c = 19.1026 (8) Å, V = 1843.35 (17) Å3, Z = 2] from single-crystal data (MoKα X-ray diffraction, CCD area detector) to the conventional R1 factor 0.031 for 1516 unique reflections with I > 2σ(I). The chemical formula (Cu0.15Ag0.24)+(Fe0.19Pb7.20)2+(Bi7.06Sb1.06)3+S20, calculated on the basis of 20 S atoms per formula unit, was determined by WDX. The unit cell contains 18 + 2 symmetrically nonequivalent atomic sites: 10 occupied by S; two by pure Pb (Pb3 and Pb4); one by pure Bi (Bi1); two by a combination of Bi and small amounts of Sb (Bi2/Sb2, Bi4/Sb3); two by Pb and Bi, and in one of these also by a small amount of Ag [Me1 = Pb2 >> Bi5 > Ag1, Me3 = Pb1 >> Bi3]; and finally one site, Me2 (Bi6 >> □), is partly occupied by Bi and partly split into an additional two adjacent trigonal planar “interstitial positions”, Cu1 and Cu2, where small amounts of Cu, Ag, and Fe can be situated. All atoms are at 4c special positions at y = 0.25 or 0.75. The structure consists of slightly to moderately distorted MeS6 octahedra sharing edges, bicapped trigonal PbS8 coordination prisms, and fairly distorted Cu1S6 and Cu2S4 polyhedra. The effects of the cation substitutions, bond valence sums, and the polyhedral characteristics are compared with other published cosalite-type structures. Among known cosalite-type structures, the largest volume contraction is shown by sample 4 (Altenberg) and involves the replacement of large cations (Bi3+ and Pb2+) by the smaller Sb3+, as well as Cu+ and Ag+. These replacements are reflected in the variations of individual Me–S bond distances, which are accompanied by variations in average Me–S distances. The degree of polyhedral distortion, Δ, progressively increases for the four Bi-hosting sites of nine cosalite-type structures: Me2 < Bi2 < Bi1 < Bi4. The Bi4 and Me3 are the most and the Me1 and Me2 are the least distorted octahedral sites of the nine cosalite-type structures.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


2017 ◽  
Vol 898 ◽  
pp. 1431-1437
Author(s):  
Hong Yang Shao ◽  
Kan Zhang ◽  
Yi Dan Zhang ◽  
Mao Wen ◽  
Wei Tao Zheng

The δ-NbN thin films with different thickness have been prepared by reactive magnetron sputtering at different deposition time and exhibited alternating textures between (111) and (200) orientations as a function of thickness. In addition, the grain size, peak position, morphology, residual stress and orientation distributions of the deposited films were explored by X-ray diffraction, low-angel X-ray reflectivity, scanning electron microscopy and surface profiler. The film deposited at 300 s showed a (111) preferred orientation, changing to (200) preferred orientation at 600 s, and exhibited alternating textures between (111) and (200) preferred orientations. With further increasing deposition time, in which (200) peak position and the full width at half maximum of (111) peak also displayed a trend of alternating variation with varying deposition time. The intrinsic stress for δ-NbN films calculated by Stoney equation alternately changed with alternating textures, in which (111) orientation always takes place at relatively high intrinsic stress state and vice versa. Meanwhile, the film with (111) preferred orientation showed higher density than (200) preferred orientation. The film deposited at 4800 s owned a mixed texture of (111) and (200), showing an anisotropy distribution of (111)-oriented and (200)-oriented grains, while film deposited at 7200 s owned a strong (200) texture, displaying an isotropy distribution of (200)-oriented grains. The competitive growth between (111)-oriented and (200)-oriented grains was responsibility for alternating texture.


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


2005 ◽  
Vol 495-497 ◽  
pp. 719-724
Author(s):  
R.E. Bolmaro ◽  
B. Molinas ◽  
E. Sentimenti ◽  
A.L. Fourty

Some ancient metallic art craft, utensils, silverware and weapons are externally undistinguishable from modern ones. Not only the general aspect and shape but also some uses have not changed through the ages. Moreover, when just some small pieces can be recovered from archaeological sites, the samples can not easily be ascribed to any known use and consequently identified. It is clear that mechanical processing has changed along history but frequently only a "microscopic" inspection can distinguish among different techniques. Some bronze samples have been collected from the Quarto d’Altino (Veneto) archaeological area in Italy (paleovenetian culture) and some model samples have been prepared by a modern artisan. The sample textures have been measured by X-ray Diffraction techniques. (111), (200) and (220) pole figures were used to calculate Orientation Distribution Functions and further recalculate pole figures and inverse pole figures. The results were compared with modern forging technology results. Textures are able to discern between hammering ancient techniques for sheet production and modern industrial rolling procedures. However, as it is demonstrated in the present work, forgery becomes difficult to detect if the goldsmith, properly warned, proceeds to erase the texture history with some hammering post-processing. The results of this contribution can offer to the archaeologists the opportunity to take into consideration the texture techniques in order to discuss the origin (culture) of the pieces and the characteristic mechanical process developed by the ancient artisan. Texture can also help the experts when discussing the originality of a certain piece keeping however in mind the cautions indicated in this publication.


2006 ◽  
Vol 114 ◽  
pp. 337-344 ◽  
Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

The texture of Al – 0.7 wt. % Li alloy processed by two different methods of severe plastic deformation (SPD) has been investigated by X-ray diffraction, and analyzed in terms of the orientation distribution function (ODF). It was found that severe plastic deformation by both Equal Channel Angular extrusion (ECAE) and Hydrostatic Extrusion (HE) resulted in an ultrafine grained structure in an Al – 0.7 wt. % Li alloy. The microstructure, grain shape and size, of materials produced by SPD strongly depend on the technological parameters and methods applied. The texture of the investigated alloy differed because of the different modes of deformation. In the initial state the alloy exhibited a very strong texture consisting of {111} fibre component. A similar fibrous texture characteristic was also found after HE whereas after the ECAE the initial texture was completely changed.


Author(s):  
Michael R. Jackson ◽  
Thomas L. Selby

A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) fromStreptomyces antibioticushas been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space groupP222, with unit-cell parametersa= 41.26,b= 51.86,c = 154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Å resolution.


Sign in / Sign up

Export Citation Format

Share Document