scholarly journals Characterization of transglutaminase homologues found in andrimid biosynthesis

2014 ◽  
Vol 70 (a1) ◽  
pp. C476-C476
Author(s):  
Janice Reimer ◽  
T Schmeing

Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes that synthesize products with diverse structures and activities ranging from antibiotics to industrial solvents. They are arranged into an assembly line of modules where each module is responsible for incorporating a specific monomer into the final nonribosomal peptide (NRP). Diversity in NRPs stems from the fact that NRPSs utilize not only the 20 proteinogenic amino acids, but also include nonproteinogenic amino acids, fatty acids, and alpha-hydroxy acids as building block substrates. Andrimid is a NRP antibiotic that inhibits membrane biosynthesis by blocking bacterial acetyl coenzyme A carboxylases. It is synthesized in a hybrid NRPS-polyketide synthase (NRPS-PKS) using a fatty acid, phenylalanine, valine, and glycine. A remarkable feature of this synthetic system is that instead of a normal condensation domain, it uses two atypical free-standing proteins with homology to transglutaminases to catalyze the formation of the first and second amide bonds. We are characterizing the action of transglutaminase homologues (TGH) in andrimid synthesis using biochemical assays and X-ray crystallography. Initial investigations of the andrimid biosynthetic cluster found in Panteao agglomerans focused on the TGH, AdmF, which catalyzes the formation of the first amide bond. Crystallization trials have been initiated on AdmF in its apo form and in complex with its interacting binding partner, the peptide carrier protein domain AdmI. To date, only a few andrimid producing bacteria have been discovered. Using genome mining, a biosynthetic cluster homologous to the andrimid biosynthetic cluster found in Panteao agglomerans was identified in Vibrio coralliilyticus. The two TGHs, CoraF and CoraS, were cloned, expressed and purified, and crystallization trials are underway. Our progress in biochemical and biophysical characterization of AdmF, CoraF, and CoraS will be presented.

2021 ◽  
Author(s):  
Cameron LM Gilchrist ◽  
Yit Heng Chooi

Abstract Background: Fungi are prolific producers of secondary metabolites (SMs), which are bioactive small molecules with important applications in medicine, agriculture and other industries. The backbones of a large proportion of fungal SMs are generated through the action of large, multi-domain megasynth(et)ases such as polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The structure of these backbones is determined by the domain architecture of the corresponding megasynth(et)ase, and thus accurate annotation and classification of these architectures is an important step in linking SMs to their biosynthetic origins in the genome. Results: Here we report synthaser, a Python package leveraging the NCBI's conserved domain search tool for remote prediction and classification of fungal megasynth(et)ase domain architectures. synthaser is capable of batch sequence analysis, and produces rich textual output and interactive visualisations which allow for quick assessment of the megasynth(et)ase diversity of a fungal genome. synthaser uses a hierarchical rule-based classification system, which can be extensively customised by the user through a web application (http://gamcil.github.io/synthaser). We show that synthaser provides more accurate domain architecture predictions than comparable tools which rely on curated profile hidden Markov model (pHMM)-based approaches; the utilisation of the NCBI conserved domain database also allows for significantly greater flexibility compared to pHMM approaches. In addition, we demonstrate how synthaser can be applied to large scale genome mining pipelines through the construction of an Aspergillus PKS similarity network. Conclusions: synthaser is an easy to use tool that represents a significant upgrade to previous domain architecture analysis tools. synthaser is freely available under a MIT license from PyPI (https://pypi.org/project/synthaser) and GitHub (https://github.com/gamcil/synthaser). Keywords: secondary metabolism, domain architecture, polyketide synthase, nonribosomal peptide synthetase, bioinformatics, software


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Song Meng ◽  
Andrew D. Steele ◽  
Wei Yan ◽  
Guohui Pan ◽  
Edward Kalkreuter ◽  
...  

AbstractNature forms S-S bonds by oxidizing two sulfhydryl groups, and no enzyme installing an intact hydropersulfide (-SSH) group into a natural product has been identified to date. The leinamycin (LNM) family of natural products features intact S-S bonds, and previously we reported an SH domain (LnmJ-SH) within the LNM hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line as a cysteine lyase that plays a role in sulfur incorporation. Here we report the characterization of an S-adenosyl methionine (SAM)-dependent hydropersulfide methyltransferase (GnmP) for guangnanmycin (GNM) biosynthesis, discovery of hydropersulfides as the nascent products of the GNM and LNM hybrid NRPS-PKS assembly lines, and revelation of three SH domains (GnmT-SH, LnmJ-SH, and WsmR-SH) within the GNM, LNM, and weishanmycin (WSM) hybrid NRPS-PKS assembly lines as thiocysteine lyases. Based on these findings, we propose a biosynthetic model for the LNM family of natural products, featuring thiocysteine lyases as PKS domains that directly install a -SSH group into the GNM, LNM, or WSM polyketide scaffold. Genome mining reveals that SH domains are widespread in Nature, extending beyond the LNM family of natural products. The SH domains could also be leveraged as biocatalysts to install an -SSH group into other biologically relevant scaffolds.


2014 ◽  
Vol 70 (6) ◽  
pp. 1718-1725 ◽  
Author(s):  
C. Leigh Allen ◽  
Andrew M. Gulick

Microorganisms produce a variety of natural productsviasecondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein fromAcinetobacter baumanniithat belongs to a larger NRPS-containing operon, encoded by the ABBFA_003406–ABBFA_003399 genes ofA. baumanniistrain AB307-0294, that has been implicated inA. baumanniimotility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.


1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


Molbank ◽  
10.3390/m1227 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1227
Author(s):  
Bibi Hanifa ◽  
Muhammad Sirajuddin ◽  
Zafran Ullah ◽  
Sumera Mahboob ◽  
See Mun Lee ◽  
...  

The synthesis and spectroscopic characterization of the glutaric acid-amide derivative, 2,4-Cl2C6H3N(H)C(=O)(CH2)3C(=O)OH (1), are described. The X-ray crystal structure determination of (1) shows the backbone of the molecule to be kinked about the methylene-C–N(amide) bond as seen in the C(p)–N–C(m)–C(m) torsion angle of −157.0(2)°; m = methylene and p = phenyl. An additional twist in the molecule is noted between the amide and phenyl groups as reflected in the C(m)–N–C(p)–C(p) torsion angle of 138.2(2)°. The most prominent feature of the molecular packing is the formation of supramolecular tapes assembled through carboxylic acid-O–H…O(carbonyl) and amide-N–H…O(amide) hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document