scholarly journals Crystal structure of 4-benzylcarbamoyl-1-methylpyridin-1-ium iodide: an efficient multimodal antiviral drug

Author(s):  
T. N. Drebushchak ◽  
Yu.A. Kryukov ◽  
A. I. Rogova ◽  
E. V. Boldyreva

In the title compound, [MeC5H4NCONHCH2C6H5]I or C14H15N2O+·I−, a cation and an anion form an ionic pair linked by a strong N—H...I hydrogen bond. In the crystal, ionic pairs linked by weak C—H...I hydrogen bonds form infinite ribbons along the crystallographicaaxis. Polymorphism screening varying crystallization solvents (water, acetone 90%–water, ethanol 90%–water, 2-propanol 90%–water, DMF, DMSO, methanol, acetonitrile) and conditions (solution temperature, heating and cooling protocols) did not reveal any other polymorphs than the one reported in this work.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicoleta Caimac ◽  
Elena Melnic ◽  
Diana Chisca ◽  
Marina S. Fonari

The title compound crystallises in the triclinic centrosymmetric space group P1̄ with an intriguing high number of crystallographically unique binary salt-like adducts (Z′ = 8) and a total number of ionic species (Z′′ = 16) in the asymmetric unit.


2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2007 ◽  
Vol 63 (11) ◽  
pp. o4278-o4278
Author(s):  
Alexandra M. Z. Slawin ◽  
William T. A. Harrison

In the title compound, C9H13N2O+·I−, the dihedral angle between the aromatic ring and the N-acetyl group is 73.93 (8)°. In the crystal structure, the cation and anion interact by way of an N—H...I hydrogen bond.


2014 ◽  
Vol 70 (9) ◽  
pp. o1051-o1052 ◽  
Author(s):  
Ignez Caracelli ◽  
Stella H. Maganhi ◽  
Paulo J. S. Moran ◽  
Bruno R. S. de Paula ◽  
Felix N. Delling ◽  
...  

In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] isE, with the ketone moiety almost coplanar [C—C—C—C torsion angle = 9.5 (2)°] along with the phenyl ring [C—C—C—C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O—N—C—C = 4.2 (2)°], whereas the one in theorthoposition is twisted [O—N—C—C = 138.28 (13)°]. The molecules associateviaC—H...O interactions, involving both O atoms from the 2-nitro group, to form a helical supramolecular chain along [010]. Nitro–nitro N...O interactions [2.8461 (19) Å] connect the chains into layers that stack along [001].


2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


2021 ◽  
pp. 1-9
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Emma L. Markun ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of osimertinib mesylate Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Osimertinib mesylate Form B crystallizes in space group P-1 (#2) with a = 11.42912(17), b = 11.72274(24), c = 13.32213(22) Å, α = 69.0265(5), β = 74.5914(4), γ = 66.4007(4)°, V = 1511.557(12) Å3, and Z = 2. The crystal structure is characterized by alternating layers of cation–anion and parallel stacking interactions parallel to the ab-planes. The cation is protonated at the nitrogen atom of the dimethylamino group, which forms a strong hydrogen bond between the cation and the anion. That hydrogen atom also participates in a weaker intramolecular hydrogen bond to an amino nitrogen. There are two additional N–H⋅⋅⋅O hydrogen bonds between the cation and the anion. Several C–H⋅⋅⋅O hydrogen bonds also link the cations and anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


Sign in / Sign up

Export Citation Format

Share Document