scholarly journals Crystal structures of two bis-carbamoylmethylphosphine oxide (CMPO) compounds

Author(s):  
Andrew I. VanderWeide ◽  
Richard J. Staples ◽  
Shannon M. Biros

Two bis-carbamoylmethylphosphine oxide compounds, namely {[(3-{[2-(diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding interactions are present in both crystals, but these interactions are intramolecular in the case of compound (I) and intermolecular in compound (II). Intramolecular π–π stacking interactions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Intermolecular C—H...π interactions [C...centroid distance of 3.622 (2) Å, C—H...centroid angle of 146°] give rise to supramolecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phosphorus atom and the amide nitrogen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are intermolecular, with a D...A distance of 2.883 (2) Å and a D—H...A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent interactions create ribbons that run along the b-axis direction.

Author(s):  
Manuela Ramos Silva ◽  
Vânia M. Moreira ◽  
Cláudia Cardoso ◽  
Ana Matos Beja ◽  
Jorge A. R. Salvador

The title compounds, C24H30N2O3, (I), and C24H34N2O3, (II), both contain an androstane backbone and a 2-methylimidazole-1-carboxylate moiety at the 17-position. Compound (I) contains two symmetry-independent molecules (denoted 1 and 2), while compound (II) contains just one molecule in the asymmetric unit. The C—C—O—C torsion angle that reflects the twisting of the 2-methylimidazole-1-carboxylate moiety from the mean steroid plane is 143.1 (2)° for molecule 1 of (I), 73.1 (3)° for molecule 2 of (I) and 86.63 (17)° for (II). The significance of this study lies in its observation of significant differences in both molecular conformation and supramolecular aggregation between the molecules of the title compounds. The solid-state conformations compared with those obtained theoretically fromab initiomethods for the isolated molecules show large differences, especially in the orientation of the methylimidazole substituent.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 603
Author(s):  
Prashanth Sandineni ◽  
Hooman Yaghoobnejad Asl ◽  
Weiguo Zhang ◽  
P. Shiv Halasyamani ◽  
Kartik Ghosh ◽  
...  

Herein, we report the syntheses of two lithium-vanadium oxide-fluoride compounds crystallized from the same reaction mixture through a time variation experiment. A low temperature hydrothermal route employing a viscous paste of V2O5, oxalic acid, LiF, and HF allowed the crystallization of one metastable phase initially, Li2VO0.55(H2O)0.45F5⋅2H2O (I), which on prolonged heating transforms to a chemically similar yet structurally different phase, Li3VOF5 (II). Compound I crystallizes in centrosymmetric space group, I2/a with a = 6.052(3), b = 7.928(4), c = 12.461(6) Å, and β = 103.99(2)°, while compound II crystallizes in a non-centrosymmetric (NCS) space group, Pna21 with a = 5.1173(2), b = 8.612(3), c = 9.346(3) Å. Synthesis of NCS crystals are highly sought after in solid-state chemistry for their second-harmonic-generation (SHG) response and compound II exhibits SHG activity albeit non-phase-matchable. In this article, we also describe their magnetic properties which helped in unambiguous assignment of mixed valency of V (+4/+5) for Li2VO0.55(H2O)0.45F5⋅2H2O (I) and +4 valency of V for Li3VOF5 (II).


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


2015 ◽  
Vol 71 (9) ◽  
pp. 1085-1088 ◽  
Author(s):  
Tyler A. Cooley ◽  
Sean Riley ◽  
Shannon M. Biros ◽  
Richard J. Staples ◽  
Felix N. Ngassa

The title compound, C13H10N2O7S, was synthesizedviaa nucleophilic substitution reaction between 2,4-dinitrophenol andp-toluenesulfonyl chloride. This crystal structure is a polymorph of CSD entry WUVYUH [Vembuet al.(2003).Acta Cryst, E59, o378–380]. The aromatic substituents on the sulfonate group are orientedgaucheto one another with a C—O—S—C torsion angle of −62.0 (3)°. The supramolecular features that contribute to the crystal stability are offset π–π [centroid–centroid distance = 3.729 (2) Å] and multiple C—H...O interactions.


2015 ◽  
Vol 71 (9) ◽  
pp. o650-o651
Author(s):  
Gamal A. El-Hiti ◽  
Keith Smith ◽  
Amany S. Hegazy ◽  
Mohammed Baashen ◽  
Benson M. Kariuki

The molecule of the title compound, C10H11N3O, is planar, including the ethyl group, as indicated by the N—C—C—C torsion angle of 1.5 (2)°. In the crystal, inversion-related molecules are stacked along theaaxis. Molecules are oriented head-to-tail and display π–π interactions with a centroid-to-centroid distance of 3.6664 (8) Å. N—H...O hydrogen bonds between molecules generate a `step' structure through formation of anR22(10) ring.


2013 ◽  
Vol 69 (10) ◽  
pp. 1186-1191
Author(s):  
Balasubramanian Sridhar ◽  
Krishnan Ravikumar ◽  
Venkatasubramanian Hariharakrishnan

Zolmitriptan hydrogen oxalate [(S)-dimethyl(2-{5-[(2-oxo-1,3-oxazolidin-4-yl)methyl]-1H-indol-3-yl}ethyl)azanium hydrogen oxalate], C16H22N3O2+·C2HO4−, (I), and zolmitriptan camphorsulfonate [(S)-dimethyl(2-{5-[(2-oxo-1,3-oxazolidin-4-yl)methyl]-1H-indol-3-yl}ethyl)azanium (S,R)-{2-hydroxy-7,7-dimethylbicyclo[2.2.1]heptan-1-yl}methanesulfonate], C16H22N3O2+·C10H15O4S−, (II), are the first reported salt complexes of the antimigraine drug zolmitriptan. Compound (I) crystallizes in the space groupP21with two molecules of protonated zolmitriptan and two oxalate monoanions in the asymmetric unit, while compound (II) crystallizes in the space groupP212121with one protonated zolmitriptan molecule and one camphorsulfonate anion in the asymmetric unit. The orientations of the ethylamine side chain and the oxazolidinone ring with respect to the indole ring of the zolmitriptan cation are different for (I) and (II). In (I), they are oriented in opposite directions and the molecule adopts a step-like appearance, while in (II) the corresponding side chains are folded in the same direction, giving the molecule a cup-like appearance. The zolmitriptan molecules of (I) form anR22(8) dimer, while in (II) they form a helical chain with aC(11) motif. The oxalate monoanions of (I) interact with the zolmitriptan cations and extend the dimer into a three-dimensional hydrogen-bonded network. In (II), the camphorsulfonate anion forms anR22(15) ring motif with the zolmitriptan cation.


2015 ◽  
Vol 71 (11) ◽  
pp. 1379-1383 ◽  
Author(s):  
Chen Liu ◽  
Khalil A. Abboud

The title compounds, μ-oxalato-κ4O1,O2:O1′,O2′-bis[[4-(2-aminoethyl)-1H-imidazole-κ2N3,N4](azido-κN1)copper(II)], [Cu2(C2O4)(N3)2(C5H9N3)2], (I), and μ-oxalato-κ4O1,O2:O1′,O2′-bis[[4-(2-aminoethyl)-1H-imidazole-κ2N3,N4](dicyanamido-κN1)copper(II)], [Cu2(C2O4)(C2N3)2(C5H9N3)2], (II), are two oxalate-bridged dinuclear copper complexes. Each CuIIion adopts a five-coordinate square-pyramidal coordination sphere where the basal N2O2plane is formed by two O atoms of the oxalate ligand and two N atoms of a bidentate chelating histamine molecule. The apical coordination site in compound (I) is occupied by a monodentate azide anion through one of its terminal N atoms. The apical coordination site in compound (II) is occupied by a monodentate dicyanamide anion through one of its terminal N atoms. The molecules in both structures are centrosymmetric. In the crystals of compounds (I) and (II), the dinuclear complexes are linked through N—H...Xand C—H...X(X= N, O) hydrogen bonds where the donors are provided by the histamine ligand and the acceptor atoms are provided by the azide, dicyanamide, and oxalate ligands. In compound (I), the coordinatively unsaturated copper ions interact with the histamine ligandviaa C—H...Cu interaction. The coordinatively unsaturated copper ions in compound (II) interactviaa weak N...Cu interaction with the dicyanamide ligand of a neighboring molecule. The side chain of the histamine ligand is disordered over three sets of sites in (II).


2021 ◽  
Vol 52 (1) ◽  
pp. 119-130
Author(s):  
Xiao Jing-Lei ◽  
Zhang Yan-Xin ◽  
Jia Cheng-Guo ◽  
Zhang Ming-Zhe ◽  
Chen Wei ◽  
...  

Based on the bioassay-guided strategy, we isolated 6-six allelochemicals [cichoric acid (I), 1,3-dicaffeoylquinic acid (II), 4,5-dicaffeoylquinic acid (III), chlorogenic acid (IV), 1-hydroxy-2-phthoic acid (V), echinacoside (VI)] from the roots of Echinacea purpurea (L.) Moench. Their structures were identified by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) spectroscopic data. The bioassays studies included allelopathic and algicidal activities to test the effects of extracts and isolated fractions against the test weeds (Amaranthus viridis L., Portulaca oleracea L. and Microcystis aeruginosa Kutzing). At 100 µg/mL, compound (II) inhibited the shoot length and germination of A. viridis and P. oleracea weeds with the germination RI of -0.95±0.04 and -0.95±0.02, respectively. Furthermore, compound (III) showed the strongest inhibition of root length of P. oleracea L. We also found that compounds I-VI have algicidal activity. The compound (I) at low inoculum (5.0×102 cells mL-1) and high inoculum (1.0×104 cells mL-1), showed the highest algicidal activity of 78 % and 87.67 % 6 h after the treatment at 5 µg mL-1 respectively.


Weed Science ◽  
1970 ◽  
Vol 18 (5) ◽  
pp. 604-607 ◽  
Author(s):  
Roy Y. Yih ◽  
Colin Swithenbank ◽  
D. Harold McRae

Transformation of N-(1,1-dimethylpropynyl)-3,5-dichlorobenzamide (compound I) in soil occurs readily and two products are produced, initial cyclization giving 2-(3,5-dichlorophenyl)-4,4-dimethyl-5-methyleneoxazoline (compound II) followed by subsequent hydrolysis to N-(1,1-dimethylacetonyl)-3,5-dichlorobenzamide (compound III). These transformations can be brought aboutin vitro, the first step by means of acid or base, and the second by extended treatment with acid. The rate of cyclization and hydrolysis of compound I varies directly with soil temperature, being rapid at high temperature (37 C) and very slow at low temperature (5 C). The rate of chemical change of compound I in soil is influenced to a much greater degree by temperature than by soil moisture content. The effect of soil type on transformation of compound I was studied and compounds II and III were present in five of the six soils examined. The herbicidal activity of compounds II and III was negligible in comparison to compound I.


1971 ◽  
Vol 124 (1) ◽  
pp. 99-106 ◽  
Author(s):  
R M. Khomutov ◽  
H B. F. Dixon ◽  
L V. Vdovina ◽  
M P. Kirpichnikov ◽  
Y V. Morozov ◽  
...  

1. N-(5′-Phosphopyridoxyl)-l-glutamic acid (P-Pxy-Glu, compound I) is readily converted at pH3 into a substance (P-Pxy-Glp, compound II) characterized as N-(5′-phosphopyridoxyl)-2-oxopyrrolidine-5-carboxylic acid. 2. The u.v., i.r. and fluorescence spectra of P-Pxy-Glu and P-Pxy-Glp have been determined; from the u.v. spectra their pK values have been found and compared. 3. The apoenzyme of aspartate aminotransferase is rapidly and irreversibly inactivated by P-Pxy-Glu, but is inactivated more slowly by P-Pxy-Glp. The complex with P-Pxy-Glp is stable enough to be isolated, but it is slowly reactivated in the presence of excess of pyridoxal phosphate. 4. The u.v. spectrum of the complex of apoenzyme and P-Pxy-Glp suggests that it contains a hydrogen bond between the phenolic hydroxyl group and the pyrrolidone nitrogen; this specifies the conformation of most of the molecule of P-Pxy-Glp. This conformation is similar to that previously postulated for the enzyme–glutamate complex except for the side chain of glutamate. Hence both the affinity of P-Pxy-Glp for the apoenzyme and the fact that it is more easily removed than P-Pxy-Glu are explicable.


Sign in / Sign up

Export Citation Format

Share Document