Transformations of the Herbicide N-(1,1-dimethylpropynyl)-3,5-dichlorobenzamide in Soil

Weed Science ◽  
1970 ◽  
Vol 18 (5) ◽  
pp. 604-607 ◽  
Author(s):  
Roy Y. Yih ◽  
Colin Swithenbank ◽  
D. Harold McRae

Transformation of N-(1,1-dimethylpropynyl)-3,5-dichlorobenzamide (compound I) in soil occurs readily and two products are produced, initial cyclization giving 2-(3,5-dichlorophenyl)-4,4-dimethyl-5-methyleneoxazoline (compound II) followed by subsequent hydrolysis to N-(1,1-dimethylacetonyl)-3,5-dichlorobenzamide (compound III). These transformations can be brought aboutin vitro, the first step by means of acid or base, and the second by extended treatment with acid. The rate of cyclization and hydrolysis of compound I varies directly with soil temperature, being rapid at high temperature (37 C) and very slow at low temperature (5 C). The rate of chemical change of compound I in soil is influenced to a much greater degree by temperature than by soil moisture content. The effect of soil type on transformation of compound I was studied and compounds II and III were present in five of the six soils examined. The herbicidal activity of compounds II and III was negligible in comparison to compound I.

Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 246-254 ◽  
Author(s):  
Cai-Xia Hou ◽  
Lynnette M. A. Dirk ◽  
Jack P. Goodman ◽  
Mark A. Williams

Actinonin is a naturally occurring hydroxamic acid and a potent inhibitor of the essential cotranslational protein processing enzyme peptide deformylase. Actinonin has both pre- and post-emergence herbicidal activity, but it is rapidly metabolized by plants, thus limiting herbicidal efficacy. Studies designed to elucidate the metabolic fate of actinonin revealed that after absorption actinonin was metabolized by tobacco plants with only about 17% of the parent compound remaining 48 h after application. Subcellular fractionation revealed that a microsomal fraction was capable of metabolizing actinonin in vitro. Two actinonin metabolites were isolated by reverse-phase high-performance liquid chromatography and identified by mass spectrometric analyses. The major metabolite was derived from the hydrolysis of the hydroxamate group to its corresponding acid, and a relatively minor metabolite through reduction of the hydroxamate group to the corresponding amide. Both metabolites were functionally inactive as inhibitors of peptide deformylase. These results provide rationale for the low efficacy of actinonin as a broad-spectrum herbicide, and identify functional groups in actinonin targeted by plants during detoxification. This information may facilitate the design and synthesis of actinonin analogues with increased herbicidal efficacy.


2015 ◽  
Vol 35 (12) ◽  
pp. 1985-1994 ◽  
Author(s):  
Yanping Li ◽  
Yangyang Zhou ◽  
Jiayu Jiang ◽  
Xinyi Wang ◽  
Yao Fu ◽  
...  

The first molecular insights into how prodrugs modified with ethanolamine-related structures target the brain were generated using an in vitro BBB model and in situ perfusion technique. Prodrugs were delivered safely and efficiently to the brain through tight interaction with the anionic membrane of brain capillary endothelial cells, observed as a shift in zeta potential, followed by uptake into the cells. Prodrugs III and IV carrying primary and secondary amine modifications appeared to enter the brain via energy-independent passive diffusion. In contrast, besides the passive diffusion, prodrugs I and II carrying tertiary amine modifications also appeared to enter via an active process that was energy and pH dependent but was independent of sodium or membrane potential. This active process involved, at least in part, the pyrilamine-sensitive H+/OC antiporter, for which the N,N-diethyl-based compound II showed a much lower affinity than the N,N-dimethyl-based compound I, likely due to steric hindrance. These new insights into brain-targeting mechanisms may help guide efforts to design new prodrugs.


Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 110-111 ◽  
Author(s):  
R. Grover

A somewhat modified version of Lambert's quantitative treatment of the influence of soil-moisture content on herbicidal activity has been applied to 4-amino-3,5,6-trichloropicolinic acid (picloram) behavior in soil. The bioactivity of picloram decreased as the soil-moisture content was increased. This was due to the effect of varying soil-moisture levels on the concentration of picloram in the soil-water phase.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 7
Author(s):  
Marilena Vlachou ◽  
Angeliki-Sofia Foscolos ◽  
Angeliki Siamidi ◽  
Angeliki Syriopoulou ◽  
Nikitas Georgiou ◽  
...  

The aqueous dissolution profile of the isomeric synthetic adamantane phenylalkylamine hydrochlorides I and II was probed. These adducts have shown significant antiproliferative/anticancer activity associated with an analgesic profile against neuropathic pain. They are both devoid of toxic effects and show appreciable enzymatic human plasma stability. The structures of these two compounds have been elucidated using 2D NMR experiments, which were used to study their predominant conformations. Compound II’s scaffold appeared more flexible, as shown by the NOE spatial interactions between the alkyl bridge chain, the aromatic rings, and the adamantane nucleus. Conversely, compound I appeared very rigid, as it did not share significant NOEs between the aforementioned structural segments. MD simulations confirmed the NOE results. The aqueous dissolution profile of both molecules fits well with their minimum energy conformers’ features, which stem from the NOE data; this was nicely demonstrated, especially in the case of compound II.


2018 ◽  
Vol 96 (7) ◽  
pp. 719-723
Author(s):  
Nevin Süleymanoğlu ◽  
Reşat Ustabaş ◽  
Şahin Direkel ◽  
Yelda Bingöl Alpaslan ◽  
Yasemin Ünver

1,2,4-triazole derivatives with morpholine; 4-((3-methylthiophene–2-yl)methylenamino)-1-((4-(3-methylthiophene–2-yl)methylene amino)-1-(morpholinomethyl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-3-(thiophene–2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (compound I) and 1-((1-(morpholinomethyl)–4-(5-nitrothiophene–2-yl)methyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-4-((5-nitrothiophene–2-yl)methyleneamino)-3-(thiophene–2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (compound II), were optimized using a density functional theory (DFT) method with 6-311G(d,p) basis set and structural and spectral parameters were determined. In vitro antileishmanial activities of compounds were performed against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue dye. Amphotericin B was used as standard drug. The results show that both compounds are antiparasitic and especially compound II has considerable antileishmanial activity due to the minimal inhibitory concentration value of 312 μg/mL.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2019 ◽  
Vol 16 (3) ◽  
pp. 245-248
Author(s):  
Hummera Rafique ◽  
Aamer Saeed ◽  
Ehsan Ullah Mughal ◽  
Muhammad Naveed Zafar ◽  
Amara Mumtaz ◽  
...  

Background: (±)-6,8-Dihydroxy-3-undecyl-3,4-dihydroisochromen-1-one is one of the structural analog of several substituted undecylisocoumarins isolated from Ononis natrix (Fabaceae), has been successfully synthesized by direct condensation of homopthalic acid (1) with undecanoyl chloride yields isochromen-1-one (2). Methods: Alkaline hydrolysis of (2) gave the corresponding keto-acid (3), which is then reduced to hydroxy acid (4) then its cyclodehydration was carried out with acetic anhydride to afford 3,4- dihydroisochromen-1-one (5). Followed by demethylation step, the synthesis of target 6,8- dihydroxy-7-methyl-3-undecyl-3,4-dihydroisocoumarin (6) was achieved. Results: In vitro antibacterial screening of all the synthesized compounds were carried out against ten bacterial strains by agar well diffusion method. Conclusion: Newly synthesized molecules exhibited moderate antibacterial activity and maximum inhibition was observed against Bacillus subtilus and Salmonella paratyphi.


2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


2020 ◽  
Vol 7 (04) ◽  
Author(s):  
PRADEEP H K ◽  
JASMA BALASANGAMESHWARA ◽  
K RAJAN ◽  
PRABHUDEV JAGADEESH

Irrigation automation plays a vital role in agricultural water management system. An efficient automatic irrigation system is crucial to improve crop water productivity. Soil moisture based irrigation is an economical and efficient approach for automation of irrigation system. An experiment was conducted for irrigation automation based on the soil moisture content and crop growth stage. The experimental findings exhibited that, automatic irrigation system based on the proposed model triggers the water supply accurately based on the real-time soil moisture values.


Sign in / Sign up

Export Citation Format

Share Document