scholarly journals Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2

2019 ◽  
Vol 75 (7) ◽  
pp. 1041-1045
Author(s):  
Lotfi Rghioui ◽  
Lahcen El Ammari ◽  
Abderrazzak Assani ◽  
Mohamed Saadi

The crystal structures of dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group P\overline{3}m1 with the glaserite structure type. VO4 tetrahedra are linked to DyO6 or GdO6 octahedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities.

Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


2003 ◽  
Vol 59 (5) ◽  
pp. 606-610 ◽  
Author(s):  
Digamber G. Porob ◽  
T. N. Guru Row

A series of M 0.5Bi3P2O10 compounds with M = Ca, Sr, Ba and Pb have been synthesized in MO–Bi2O3–P2O5 ternary systems by the ceramic method and the crystal structures were then solved using single-crystal X-ray diffraction data. These compounds are isostructural with Bi6.67P4O20 (triclinic, space group P\bar 1, Z = 2). The structures consist of infinite chains of Bi2O2 units along the c axis formed by linking BiO8 and BiO6 polyhedra. These chains are interconnected by MO8 polyhedra forming two-dimensional layers in the ac plane. The phosphate tetrahedra are sandwiched between these layers.


2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


2008 ◽  
Vol 63 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Maria L. Fornasini ◽  
Pietro Manfrinetti ◽  
Donata Mazzone ◽  
Sudesh K. Dhar

The title compounds were synthesized and their crystal structures determined by single crystal X-ray diffraction data. Both compounds crystallize with the cubic space group Im3̄̅. Yb(Zn,Al)∽6: a = 14.299(4) Å , wR(F2) = 0.041, with Yb25.39(2)Zn138.2(3)Al7.7(3) as the refined composition; YbZn∽6: a = 14.298(4) Å , wR(F2) = 0.079, with Yb25.05(3)Zn146.83(9) as the refined composition. Their crystal structures are closely related to the YCd6 type, with two different details: Zn/Al (or Zn) atoms in the 8c sites center the cubic interstices of the structure; the pentagonal dodecahedron cavities are partially filled by ytterbium atoms in the 2a sites, with an environment topologically similar to that found in the clathrate-I compounds. Magnetic properties of the two compounds are also reported.


Author(s):  
Th. Woike ◽  
P. Held ◽  
M. Mühlberg ◽  
M. Imlau

AbstractCrystal structures of both isostructural com-pounds were solved from single crystal X-ray diffraction data (space group


1988 ◽  
Vol 43 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Peter Stolz ◽  
Siegfried Pohl

The compounds (Ph4P)MnI3L (1), MnI2L3 (2), [MnIL5]I3 (3), and [MnL6](I3)2 (4) (L = C4 H8O, thf) were prepared in thf solution and their structures determined from single crystal X-ray diffraction data. 1 crystallizes in the monoclinic space group C2/c with a = 1743.6(1), b = 1985.8(1), c = 1806.7(1) pm, β = 98.74(1)°, Z = 8. The structure of 1 exhibits tetrahedral anions. The Mn-I distance was found to be 268.0 pm (mean). 2: monoclinic, C2/c with a = 1252.3(2), b = 1255.0(3), c = 1271.8(3) pm β = 113.88(2)°, Z = 4. The characteristic feature of the structure of 2 is the existence of neutral MnI2L3 molecules with a distorted trigonal bipyramidal geometry and the iodine atoms in equatorial positions (Mn-I: 271.1 pm). The compound crystallizes from a solution of Mnl2 in tetrahydrofuran. 3: monoclinic, C2/c with a = 1695.3(1), b = 1123.1(1), c = 1646.2(1̱) pm, β = 96.91(1)°, Z = 4. The preparation of 3 from 2 and iodine yields octahedral MnIL+5 cations (Mn-I: 278.8̄ pm) and triiodide anions. 4: monoclinic, P21/n with a = 1005.5(1). b = 1056.8(1), c =1835.6(2) pm, β = 91.16(1)°, Z = 2. 4 is prepared from 3 and iodine in thf solution, and shows octahedral MnL62+ cations and triiodide anions


2009 ◽  
Vol 64 (9) ◽  
pp. 1032-1040 ◽  
Author(s):  
Stefanie A. Hering ◽  
Hubert Huppertz

Monoclinic holmium sesquioxide B-Ho2O3 and orthorhombic holmium orthogallate HoGaO3 were synthesized in a Walker-type multianvil apparatus under high-pressure / high-temperature conditions of 11.5 GPa / 1250 °C and 7.5 GPa / 1250 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data, collected at r. t. The monoclinic holmium oxide crystallizes in the space group C2/m (Z = 6) with the parameters a = 1394.7(3), b = 350.83(7), c = 865.6(2) pm, β = 100.23(3)°, R1 = 0.0517, wR2 = 0.1130 (all data), and the orthorhombic compound HoGaO3 in Pnma (Z = 4) with the parameters a = 553.0(2), b = 753.6(2), c = 525.4(2) pm, R1 = 0.0222, and wR2 = 0.0303 (all data).


1988 ◽  
Vol 43 (4) ◽  
pp. 457-462 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak

AbstractThe structures of (Ph4P)2Fe4S4I4 (1) and (Me3NCH2Ph)2Fe4S4I4 (2) were determined from single crystal X-ray diffraction data.1 crystallizes in the tetragonal space group I41/a with a = 1088.3(1) and c = 4540.3(2) pm. Z = 4.2: Monoclinic, space group Cc. a = 1332.0(2), b = 1513.8(3), c = 1755.1(3) pm, β = 96.69(1)°, Z = 4.In 1 the anion Fe4S4I42- has imposed S4 symmetry with four short (226.2 pm) and eight long (228.1 and 228.4 pm) Fe-S distances parallel and perpendicular, respectively, to the crystallo­graphic 4̃ axis. The Fe-Fe distances were found to be 274.3 and 275.5 pm (Fe-I 254.1 p0m).In (Me3NCH2Ph)2Fe4S4I4 the [Fe4S4]2+ cluster also exhibits a slightly compressed tetragonal core structure but the core distortions are larger and less regular than in 1 (Fe-S distances from 224.6 to 232.9 pm, Fe-Fe distances from 269.6 to 275.9 pm, Fe-I distances from 249.5 to 255.7 pm).In addition there are in 2 iodine-iodine interactions between the anions with an I-I distance of 391.7 pm. These weak attractive forces seem to be the reason for the rather large and hitherto in [Fe4S4] clusters with four identical ligands unobserved distortion of the Fe4S4 core.


2020 ◽  
Vol 75 (3) ◽  
pp. 303-307
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Yaroslav Kalychak

AbstractThe intermetallic compound SmNi5.2Mn6.8 was synthesized by arc-melting and its crystal structure has been determined using single-crystal X-ray diffraction data. The compound adopts the tetragonal structure type ThMn12: space group I4/mmm, Pearson code tI26, Z = 2; a = 8.6528(3), c = 4.8635(3) Å; R1 = 0.0175, wR2 = 0.0372, 171 F2 values, 17 refined variables. The two crystallographic positions 8f and 8j in the structure of SmNi5.2Mn6.8 are occupied by a mixture of Mn and Ni atoms.


Sign in / Sign up

Export Citation Format

Share Document