A modification of DMVs based state space model of variation propagation for multistage machining processes

2017 ◽  
Vol 37 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Fuyong Yang ◽  
Sun Jin ◽  
Zhimin Li

Purpose Complicated workpiece, such as an engine block, has special rough locating datum features (i.e. six independent datum features) due to its complex structure. This locating datum error cannot be handled by current variation propagation model based on differential motion vectors. To extend variation prediction fields, this paper aims to solve the unaddressed variation sources to modify current model for multistage machining processes. Design/methodology/approach To overcome the limitation of current variation propagation model based on differential motion vectors caused by the unaddressed variation sources, this paper will extend the current model by handling the unaddressed datum-induced variation and its corresponding fixture variation. Findings The measurement results of the rear face with respect to the rough datum W and the pan face with respect to the hole Q by coordinate measuring machine (CMM) are −0.006 mm and 0.031 mm. The variation results for rear face and pan face predicted by the modified model are −0.009 mm and 0.025 mm, respectively. The discrepancy of model prediction and measurement is very small. Originality/value This paper modifies the variation propagation model based on differential motion vectors by solving the unaddressed variation sources, which can extend the variation prediction fields for some complicated workpiece and is useful in the future work for many fields, such as process monitoring, fault diagnosis, quality-assured setup planning and process-oriented tolerancing.

2019 ◽  
Vol 39 (4) ◽  
pp. 514-522
Author(s):  
Yinhua Liu ◽  
Shiming Zhang ◽  
Guoping Chu

PurposeThis paper aims to present a combination modeling method using multi-source information in the process to improve the accuracy of the dimension propagation relationship for assembly variation reduction.Design/methodology/approachBased on a variable weight combination prediction method, the combination model that takes the mechanism model and data-driven model based on inspection data into consideration is established. Furthermore, the combination model is applied to qualification rate prediction for process alarming based on the Monte Carlo simulation and also used in engineering tolerance confirmation in mass production stage.FindingsThe combination model of variable weights considers both the static theoretical mechanic variation propagation model and the dynamic variation relationships from the regression model based on data collections, and provides more accurate assembly deviation predictions for process alarming.Originality/valueA combination modeling method could be used to provide more accurate variation predictions and new engineering tolerance design procedures for the assembly process.


2018 ◽  
Vol 38 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Liang Cheng ◽  
Qing Wang ◽  
Jiangxiong Li ◽  
Yinglin Ke

Purpose This paper aims to present a modeling and analysis approach for multi-station aircraft assembly to predict assembly variation. The variation accumulated in the assembly process will influence the dimensional accuracy and fatigue life of airframes. However, in digital large aircraft assembly, variation propagation analysis and modeling are still unresolved issues. Design/methodology/approach Based on an elastic structure model and variation model of multistage assembly in one station, the propagation of key characteristics, assembly reference and measurement errors are introduced. Moreover, the reposition and posture coordination are considered as major aspects. The reposition of assembly objects in a different assembly station is described using transformation and blocking of coefficient matrix in finite element equation. The posture coordination of the objects is described using homogeneous matrix multiplication. Then, the variation propagation model and analysis of large aircraft assembly are established using a discrete system diagram. Findings This modeling and analysis approach for multi-station aircraft assembly reveals the basic rule of variation propagation between adjacent assembly stations and can be used to predict assembly variation or potential dimension problems at a preliminary assembly phase. Practical implications The modeling and analysis approaches have been used in a transport aircraft project, and the calculated results were shown to be a good prediction of variation in the actual assembly. Originality/value Although certain simplifications and assumptions have been imposed, the proposed method provides a better understanding of the multi-station assembly process and creates an analytical foundation for further work on variation control and tolerance optimization.


Author(s):  
Hui Wang ◽  
Qiang Huang ◽  
Reuven Katz

Variation propagation modeling has been proved to be an effective way for variation reduction and design synthesis in multi-operational manufacturing processes (MMP). However, previously developed approaches for machining processes did not directly model the process physics regarding how fixture, and datum, and machine tool errors generate the same pattern on part features. Consequently, it is difficult to distinguish error sources at each operation. This paper formulates the variation propagation model using the proposed equivalent fixture error (EFE) concept. With this concept, datum error and machine tool error are transformed to equivalent fixture locator errors at each operation. As a result, error sources can be grouped and root cause identification can be conducted in a sequential manner. The case studies demonstrate the model validity through a real cutting experiment and model advantage in measurement reduction for root cause identification.


2011 ◽  
Vol 130-134 ◽  
pp. 2573-2576
Author(s):  
Yan Wang ◽  
Ping Yu Jiang

This paper presents a type of architecture of multistage machining processes in small batch mode, named Small-batch Quality Control System (SQCS), through analyzing various process quality control methods. The SQCS integrates complex network, workpiece variation propagation model and process quality prediction. And then, the three key enabling technologies are discussed in detail. Sensor network could be used to acquire real-time quality data, which include workpieces’ physical and dimensional information. Based on the above mentioned ideas, a general model of stage flow in small batch mode is constructed in order to realize process-driven online quality control and improve product machining quality.


2020 ◽  
Vol 111 (9-10) ◽  
pp. 2987-2998
Author(s):  
Filmon Yacob ◽  
Daniel Semere

Abstract Variation propagation models play an important role in part quality prediction, variation source identification, and variation compensation in multistage manufacturing processes. These models often use homogenous transformation matrix, differential motion vector, and/or Jacobian matrix to represent and transform the part, tool and fixture coordinate systems and associated variations. However, the models end up with large matrices as the number features and functional element pairs increase. This work proposes a novel strategy for modelling of variation propagation in multistage machining processes using dual quaternions. The strategy includes representation of the fixture, part, and toolpath by dual quaternions, followed by projection locator points onto the features, which leads to a simplified model of a part-fixture assembly and machining. The proposed approach was validated against stream of variation models and experimental results reported in the literature. This paper aims to provide a new direction of research on variation propagation modelling of multistage manufacturing processes.


2007 ◽  
Vol 129 (6) ◽  
pp. 1088-1100 ◽  
Author(s):  
Jianming Li ◽  
Theodor Freiheit ◽  
S. Jack Hu ◽  
Yoram Koren

This paper proposes a comprehensive quality prediction framework for multistage machining processes, connecting engineering design with the activities of quality modeling, variation propagation modeling and calculation, dimensional variation evaluation, dimensional variation analysis, and quality feedback. Presented is an integrated information model utilizing a hybrid (feature/point-based) dimensional accuracy and variation quality modeling approach that incorporates Monte Carlo simulation, variation propagation, and regression modeling algorithms. Two important variations (kinematic and static) for the workpiece, machine tool, fixture, and machining processes are considered. The objective of the framework is to support the development of a quality prediction and analysis software tool that is efficient in predicting part dimensional quality in a multistage machining system (serial, parallel, or hybrid) from station level to system level.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ibrahim Ajani ◽  
Cong Lu

Purpose This paper aims to develop a mathematical method to analyze the assembly variation of the non-rigid assembly, considering the manufacturing variations and the deformation variations of the non-rigid parts during the assembly process. Design/methodology/approach First, this paper proposes a deformation gradient model, which represents the deformation variations during the assembly process by considering the forces and the self-weight of the non-rigid parts. Second, the developed deformation gradient models from the assembly process are integrated into the homogenous transformation matrix to model the deformation variations and manufacturing variations of the deformed non-rigid part. Finally, a mathematical model to analyze the assembly variation propagation is developed to predict the dimensional and geometrical variations due to the manufacturing variations and the deformation variations during the assembly process. Findings Through the case study with a crosshead non-rigid assembly, the results indicate that during the assembly process, the individual deformation values of the non-rigid parts are small. However, the cumulative deformation variations of all the non-rigid parts and the manufacturing variations present a target value (w) of −0.2837 mm as compared to a target value of −0.3995 mm when the assembly is assumed to be rigid. The difference in the target values indicates that the influence of the non-rigid part deformation variations during the assembly process on the mechanical assembly accuracy cannot be ignored. Originality/value In this paper, a deformation gradient model is proposed to obtain the deformation variations of non-rigid parts during the assembly process. The small deformation variation, which is often modeled using a finite-element method in the existing works, is modeled using the proposed deformation gradient model and integrated into the nominal dimensions. Using the deformation gradient models, the non-rigid part deformation variations can be computed and the accumulated deformation variation can be easily obtained. The assembly variation propagation model is developed to predict the accuracy of the non-rigid assembly by integrating the deformation gradient models into the homogeneous transformation matrix.


Author(s):  
Mengrui Zhu ◽  
Guangyan Ge ◽  
Xiaobing Feng ◽  
Zhengchun Du ◽  
Jianguo Yang

Abstract Modeling the variation propagation based on the stream of variation (SoV) methodology for multistage machining processes (MMPs) has been investigated intensively in the past two decades, however little research is conducted on the variation reduction and the existing work fails to be applied to irregular features caused by the machining-induced variation varying with the positions of the contour points on the machined surface. This paper proposes a novel error compensation method for MMPs through modifying the tool path to reduce variation for general features. The method based on differential motion vector (DMV) sets of multiple contour points is presented to represent the deviation of the irregular feature. Then the conventional SoV model is further extended to more accurately describe variation propagation for irregular features considering the actual datum-induced variations and the varying machining-induced variations, especially the deformation errors for the low stiffness workpiece. Based on the extended SoV model and error equivalence mechanism, the datum error and fixture error are transformed to the equivalent tool path error. Then the original tool path is modified through shifting the machine zero point of machine tools with no need for changing the original G code and workpiece setup. A real cutting experiment validates the effectiveness of the proposed error compensation method for MMPs with an average precision improvement of over 60%. The application of the extended SoV model significantly contributes to compensating more complex error sources for MMPs, such as the clamp force, the internal residual stress, etc.


2015 ◽  
Vol 35 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Yujun Cao ◽  
Xin Li ◽  
Zhixiong Zhang ◽  
Jianzhong Shang

Purpose – This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision assembly of aeroplane, which includes predicting the assembly variation and compensating the assembly errors. Design/methodology/approach – The paper opted for an exploratory study using the state space theory and small displacement torsor theory. The assembly variation propagation model is established. The experiment data are obtained by a real small aeroplane assembly process. Findings – The paper provides the predicting and compensating method for aeroplane assembly accuracy. Originality/value – This paper fulfils an identified need to study how the assembly variation propagates in the assembly process.


Sign in / Sign up

Export Citation Format

Share Document