Gas turbine gas-path fault identification using nested artificial neural networks

2018 ◽  
Vol 90 (6) ◽  
pp. 992-999 ◽  
Author(s):  
Amare D. Fentaye ◽  
Aklilu T. Baheta ◽  
Syed Ihtsham Ul-Haq Gilani

Purpose The purpose of this paper is to present a quantitative fault diagnostic technique for a two-shaft gas turbine engine applications. Design/methodology/approach Nested artificial neural networks (NANNs) were used to estimate the progressive deterioration of single and multiple gas-path components in terms of mass flow rate and isentropic efficiency indices. The data required to train and test this method are attained from a thermodynamic model of the engine under steady-state conditions. To evaluate the tolerance of the method against measurement uncertainties, Gaussian noise values were considered. Findings The test results revealed that this proposed method is capable of quantifying single, double and triple component faults with a sufficiently high degree of accuracy. Moreover, the authors confirmed that NANNs have derivable advantages over the single structure-based methods available in the public domain, particularly over those designed to perform single and multiple faults together. Practical implications This method can be used to assess engine’s health status to schedule its maintenance. Originality/value For complicated gas turbine diagnostic problems, the conventional single artificial neural network (ANN) structure-based fault diagnostic technique may not be enough to get robust and accurate results. The diagnostic task can rather be better done if it is divided and shared with multiple neural network structures. The authors thus used seven decentralized ANN structures to assess seven different component fault scenarios, which enhances the fault identification accuracy significantly.

2020 ◽  
Vol 31 (4) ◽  
pp. 1023-1037 ◽  
Author(s):  
Seyed-Hadi Mirghaderi

PurposeThis paper aims to develop a simple model for estimating sustainable development goals index using the capabilities of artificial neural networks.Design/methodology/approachSustainable development has three pillars, including social, economic and environmental pillars. Three clusters corresponding to the three pillars were created by extracting sub-indices of three 2018 global reports and performing cluster analysis on the correlation matrix of sub-indices. By setting the sustainable development goals index as the target variable and selecting one indicator from each cluster as input variables, 20 artificial neural networks were run 30 times.FindingsArtificial neural networks with seven nodes in one hidden layer can estimate sustainable development goals index by using just three inputs, including ecosystem vitality, human capital and gross national income per capita. There is an excellent similarity (>95%) between the results of the artificial neural network and the sustainable development goals index.Practical implicationsInstead of calculating 232 indicators for determining the value of sustainable development goals index, it is possible to use only three sub-indices, but missing 5% of precision, by using the proposed artificial neural network model.Originality/valueThe study provides additional information on the estimating of sustainable development and proposes a new simple method for estimating the sustainable development goals index. It just uses three sub-indices, which can be retrieved from three global reports.


2014 ◽  
Author(s):  
Dengji Zhou ◽  
Jiayun Wang ◽  
Huisheng Zhang ◽  
Shilie Weng

As a crucial section of gas turbine maintenance decision-making process, to date, gas path fault diagnostic has gained a lot of attention. However, model-based diagnostic methods, like non-linear gas path analysis (GPA) and genetic algorithms, need an accurate gas turbine model, and diagnostic methods without gas turbine model, like artificial neural networks, need a large number of experimental data. Both are difficult to gain. Support vector machine (SVM), a novel computational learning method with excellent performance, seems to be a good choice for gas path fault diagnostic of gas turbine without engine model. In this paper, SVM is employed to diagnose a deteriorated gas turbine. And the diagnostic result of SVM is compared to the result of artificial neural networks. The comparing result confirms that SVM has an obvious advantage over artificial neural networks method based on a small sample of data, and can be employed to gas path fault diagnostic of gas turbine. Additionally, SVM with radial basis kernel function is the best choice for gas turbine gas path fault diagnostic based on small sample.


2014 ◽  
Vol 32 (5) ◽  
pp. 552-566 ◽  
Author(s):  
Prajita Chowdhury ◽  
Mercy S Samuel

Purpose – The purpose of this paper is to study the usefulness of neural network to explain the gap between behavior intention and actual behavior in the consumption of green products. The paper draws the base from theory of planned behavior (TPB) and social dilemma theory. Design/methodology/approach – Artificial neural networks were used to analyze the data. A survey instrument was developed to understand the behavior pattern of customers while purchasing energy-efficient products. The outputs and input variables were identified and the input variables were divided into binary and discreet inputs. Findings – The research attempts to identify the factors that drive as well as avoid green consumerism. It also details the measures that can be adapted to address the social dilemma of green consumerism. In general the paper identifies with the literature in eliciting that environmental consciousness does not drive green consumerism. Research limitations/implications – The results of the study have important implications for practitioners as well as researchers. It is observed that neural network also provides inconclusive evidence for the intention behavior gap. This can be further explored by identifying different elements of environment consciousness and further testing. Practical implications – Marketers need to have strategies interwoven with traditional influencers to promote their green offerings. The consumers expect a clear and measurable benefit to the green offerings that the marketers are marketing. Originality/value – The research has its conceptual base in the TPB and social dilemma theory to understand the drivers of purchase behavior while evaluating an electronic product available in both energy efficient non-energy efficient rating scenario.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stewart Li ◽  
Richard Fisher ◽  
Michael Falta

Purpose Auditors are required to perform analytical procedures during the planning and concluding phases of the audit. Such procedures typically use data aggregated at a high level. The authors investigate whether artificial neural networks, a more sophisticated technique for analytical review than typically used by auditors, may be effective when using high level data. Design/methodology/approach Data from companies operating in the dairy industry were used to train an artificial neural network. Data with and without material seeded errors were used to test alternative techniques. Findings Results suggest that the artificial neural network approach was not significantly more effective (taking into account both Type I and II errors) than traditional ratio and regression analysis, and none of the three approaches provided more overall effectiveness than a purely random procedure. However, the artificial neural network approach did yield considerably fewer Type II errors than the other methods, which suggests artificial neural networks could be a candidate to improve the performance of analytical procedures in circumstances where Type II error rates are the primary concern of the auditor. Originality/value The authors extend the work of Coakley and Brown (1983) by investigating the application of artificial neural networks as an analytical procedure using aggregated data. Furthermore, the authors examine multiple companies from one industry and supplement financial information with both exogenous industry and macro-economic data.


2017 ◽  
Vol 89 (2) ◽  
pp. 211-230 ◽  
Author(s):  
Ney Rafael Secco ◽  
Bento Silva de Mattos

Purpose Multidisciplinary design frameworks elaborated for aeronautical applications require considerable computational power that grows enormously with the utilization of higher fidelity tools to model aeronautical disciplines like aerodynamics, loads, flight dynamics, performance, structural analysis and others. Surrogate models are a good alternative to address properly and elegantly this issue. With regard to this issue, the purpose of this paper is the design and application of an artificial neural network to predict aerodynamic coefficients of transport airplanes. The neural network must be fed with calculations from computational fluid dynamic codes. The artificial neural network system that was then developed can predict lift and drag coefficients for wing-fuselage configurations with high accuracy. The input parameters for the neural network are the wing planform, airfoil geometry and flight condition. An aerodynamic database consisting of approximately 100,000 cases calculated with a full-potential code with computation of viscous effects was used for the neural network training, which is carried out with the back-propagation algorithm, the scaled gradient algorithm and the Nguyen–Wridow weight initialization. Networks with different numbers of neurons were evaluated to minimize the regression error. The neural network featuring the lowest regression error is able to reduce the computation time of the aerodynamic coefficients 4,000 times when compared with the computing time required by the full potential code. Regarding the drag coefficient, the average error of the neural network is of five drag counts only. The computation of the gradients of the neural network outputs in a scalable manner is possible by an adaptation of back-propagation algorithm. This enabled its use in an adjoint method, elaborated by the authors and used for an airplane optimization task. The results from that optimization were compared with similar tasks performed by calling the full potential code in another optimization application. The resulting geometry obtained with the aerodynamic coefficient predicted by the neural network is practically the same of that designed directly by the call of the full potential code. Design/methodology/approach The aerodynamic database required for the neural network training was generated with a full-potential multiblock-structured code. The training process used the back-propagation algorithm, the scaled-conjugate gradient algorithm and the Nguyen–Wridow weight initialization. Networks with different numbers of neurons were evaluated to minimize the regression error. Findings A suitable and efficient methodology to model aerodynamic coefficients based on artificial neural networks was obtained. This work also suggests appropriate sizes of artificial neural networks for this specific application. We demonstrated that these metamodels for airplane optimization tasks can be used without loss of fidelity and with great accuracy, as their local minima might be relatively close to the minima of the original design space defined by the call of computational fluid dynamics codes. Research limitations/implications The present work demonstrated the ability of a metamodel with artificial neural networks to capture the physics of transonic and subsonic flow over a wing-fuselage combination. The formulation that was used was the full potential equation. However, the present methodology can be extended to model more complex formulations such as the Euler and Navier–Stokes ones. Practical implications Optimum networks reduced the computation time for aerodynamic coefficient calculations by 4,000 times when compared with the full-potential code. The average absolute errors obtained were of 0.004 and 0.0005 for lift and drag coefficient prediction, respectively. Airplane configurations can be evaluated more quickly. Social implications If multidisciplinary optimization tasks for airplane design become more efficient, this means that more efficient airplanes (for instance less polluting airplanes) can be designed. This leads to a more sustainable aviation. Originality/value This research started in 2005 with a master thesis. It was steadily improved with more efficient artificial neural networks able to handle more complex airplane geometries. There is a single work using similar techniques found in a conference paper published in 2007. However, that paper focused on the application, i.e. providing very few details of the methodology to model aerodynamic coefficients.


Author(s):  
M. F. Abdul Ghafir ◽  
Y. G. Li ◽  
L. Wang

Accurate and reliable component life prediction is crucial to ensure safety and economics of gas turbine operations. In pursuit of such improved accuracy and reliability, model-based creep life prediction methods have become more complicated and demand higher computational time. Therefore, there is a need to find an alternative approach that is able to provide a quick solution to creep life prediction for production engines while at the same time maintain the same accuracy and reliability as that of the model-based methods. In this paper, a novel creep life prediction approach using artificial neural networks is introduced as an alternative to the model-based creep life prediction approach to provide a quick and accurate estimation of gas turbine creep life. Multilayer feed forward backpropagation neural networks have been utilized to form three neural network–based creep life prediction architectures known as the range-based, functional-based, and sensor-based architectures. The new neural network creep life prediction approach has been tested with a model single-spool turboshaft gas turbine engine. The results show that good generalization can be achieved in all three neural network architectures. It was also found that the sensor-based architecture is better than the other two in terms of accuracy, with 98% of the post-test samples possessing prediction errors within ±0.4%.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


Sign in / Sign up

Export Citation Format

Share Document