Performance analysis of segmented rotor switched reluctance motors with three types of winding connections for belt-driven starter generators of hybrid electric vehicles

Author(s):  
Xiaodong Sun ◽  
Zhuicai Zhou ◽  
Long Chen ◽  
Zebin Yang ◽  
Shouyi Han

Purpose Inductance, torque and iron loss are the key parameters of switched reluctance motors for belt-driven starter generators. This paper aims to present the analysis of a segmented rotor switched reluctance motor (SSRM) with three types of winding connections for hybrid electric vehicle applications by using a two-dimensional finite element method. Design/methodology/approach The rotor of the studied SSRM consists of a series of discrete segments, while the stator is made up of exciting and auxiliary teeth. First, the concept and structures of the different winding connections are introduced. Then, the magnetic flux path of the three types of winding connections for the SSRM is described. Second, the magnetic flux distributions in the three parts, i.e. the stator yoke, the stator tooth and the rotor segment, are described in detail to calculate the iron losses. Third, three SSRMs with the different winding arrangements are analyzed and compared to evaluate the distinct features of the studied SSRM. The analysis and comparison mainly include self-inductances, mutual inductances, phase currents, output torque and iron loss. Findings It is found that the self-inductances of the three types of winding connections are almost equal, and only the SSRM1 has a positive mutual inductance. In addition, the current waveforms of SSRM1 and SSRM2 are regular. However, it is irregular in SSRM3. It is shown that SSRM1 has better characteristics, such as higher output torque, high power density, lower torque ripple and iron loss. Originality/value This paper proposes and analyzes three novel winding connections for the SSRM to provide guidance for enhancing the output torque and reducing the iron loss to achieve high efficiency.

Author(s):  
Xiaodong Sun ◽  
Jiangling Wu ◽  
Shaohua Wang ◽  
Kaikai Diao ◽  
Zebin Yang

Purpose The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work. Design/methodology/approach The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM. Findings It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems. Originality/value This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.


1999 ◽  
Vol 46 (1) ◽  
pp. 177-183 ◽  
Author(s):  
A.M. Stankovic ◽  
G. Tadmor ◽  
Z.J. Coric ◽  
I. Agirman

Author(s):  
K. Wang ◽  
Z.Q. Zhu ◽  
G. Ombach ◽  
M. Koch ◽  
S. Zhang ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of synchronous reluctance machine with emphasis on output torque capability and torque ripple. Design/methodology/approach – AC synchronous reluctance machine (SynRM) or permanent magnet assisted SynRM presently receives a great deal of interest, since there is less or even no rare-earth permanent magnet in the rotor. Most of SynRM machines employ a stator that is originally designed for a standard squirrel cage induction motor for a similar output rating and application, or the SynRM machine with 24-slot, four-pole are often directly chosen for investigation in most of the available literature. Therefore, it is necessary to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of SynRM machine with emphasis on output torque capability and torque ripple. Findings – The average torque decreases with the increase of the pole numbers but remain almost constant when employing different stator slot numbers but with the same pole number. In addition, the torque ripple decreases significantly with the increase of the stator slot number. The machine with double-layer flux-barrier in the rotor has the biggest average torque, while the machines with three- and four-layer flux-barrier in the rotor have almost the same average torque but their value is slightly smaller than that of machine with double-layer flux-barrier. However, the machine with three-layer flux-barrier has the lowest torque ripple but the highest torque ripple exists in the machine with double-layer flux-barrier. Research limitations/implications – The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application. Originality/value – This paper has analyzed the torque ripple and average torque of SynRMs with considering slot/pole number combinations together with the flux-barrier number.


Sign in / Sign up

Export Citation Format

Share Document