NucleuS™ production technology boosting efficiency of volume production of printed circuit boards and cutting costs

Circuit World ◽  
2010 ◽  
Vol 36 (1) ◽  
2020 ◽  
Vol 33 (2) ◽  
pp. 14-21
Author(s):  
Carmichael Gugliotti ◽  
Rich Bellemare ◽  
Andy Oh ◽  
Ron Blake

ABSTRACT Pulse plating of copper has typically found use in the plating of very difficult, high aspect ratio printed circuit boards. Its ability to provide throwing power deep within through holes with aspect ratios as high as 30:1 is well established. This technology has long been thought of as a high technology, high cost, specialty process applicable only to high end products. This paper will discuss the advantages that pulse plating offers over conventional DC copper plating in high volume production applications for panels with aspect ratios of up to 12:1. These advantages are reduced plating time, increased throughput, and reduced plated copper thickness on the panel surface while meeting minimum in-hole copper thickness requirements.  


2008 ◽  
Vol 128 (11) ◽  
pp. 657-662 ◽  
Author(s):  
Tsuyoshi Maeno ◽  
Yukihiko Sakurai ◽  
Takanori Unou ◽  
Kouji Ichikawa ◽  
Osamu Fujiwara

2018 ◽  
Vol 23 (2) ◽  
pp. 141-148
Author(s):  
S.Sh. Rekhviashvili ◽  
◽  
M.O. Mamchuev ◽  
V.V. Narozhnov ◽  
M.M. Oshkhunov ◽  
...  

2013 ◽  
Vol 61 (3) ◽  
pp. 731-735
Author(s):  
A.W. Stadler ◽  
Z. Zawiślak ◽  
W. Stęplewski ◽  
A. Dziedzic

Abstract. Noise studies of planar thin-film Ni-P resistors made in/on Printed Circuit Boards, both covered with two different types of cladding or uncladded have been described. The resistors have been made of the resistive-conductive-material (Ohmega-Ply©) of 100 Ώ/sq. Noise of the selected pairs of samples has been measured in the DC resistance bridge with a transformer as the first stage in a signal path. 1/f noise caused by resistance fluctuations has been found to be the main noise component. Parameters describing noise properties of the resistors have been calculated and then compared with the parameters of other previously studied thin- and thick-film resistive materials.


2014 ◽  
Vol 13 (10) ◽  
pp. 2601-2607 ◽  
Author(s):  
Jae-chun Lee ◽  
Manoj Kumar ◽  
Min-Seuk Kim ◽  
Jinki Jeong ◽  
Kyoungkeun Yoo

Sign in / Sign up

Export Citation Format

Share Document