Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition

2015 ◽  
Vol 32 (6) ◽  
pp. 1549-1566 ◽  
Author(s):  
Lei Tan ◽  
Baoshan Zhu ◽  
Yuchuan Wang ◽  
Shuliang CAO ◽  
Shaobo Gui

Purpose – The purpose of this paper is to elucidate the detailed flow field and cavitation effect in the centrifugal pump volute at partial load condition. Design/methodology/approach – Unsteady flows in a centrifugal pump volute at non-cavitation and cavitation conditions are investigated by using a computation fluid dynamics framework combining the re-normalization group k-e turbulence model and the mass transport cavitation model. Findings – The flow field in pump volute is very complicated at part load condition with large pressure gradient and intensive vortex movement. Under cavitation conditions, the dominant frequency for most of the monitoring points in volute transit from the blade passing frequency to a lower frequency. Generally, the maximum amplitudes of pressure fluctuations in volute at serious cavitation condition is twice than that at non-cavitation condition because of the violent disturbances caused by cavitation shedding and explosion. Originality/value – The detailed flow field and cavitation effect in the centrifugal pump volute at partial load condition are revealed and analysed.

Author(s):  
Muhannad Altimemy ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations are conducted to characterize the spatial and temporal characteristics of the flow field inside a Francis turbine operating in the excess load regime. A high-fidelity Large Eddy Simulation (LES) turbulence model is applied to investigate the flow-induced pressure fluctuations in the draft tube of a Francis Turbine. Probes placed alongside the wall and in the center of the draft tube measure the pressure signal in the draft tube, the pressure over the turbine blades, and the power generated to compare against previous studies featuring design point and partial load operating conditions. The excess load is seen during Francis turbines in order to satisfy a spike in the electrical demand. By characterizing the flow field during these conditions, we can find potential problems with running the turbine at excess load and inspire future studies regarding mitigation methods. Our studies found a robust low-pressure region on the edges of turbine blades, which could cause cavitation in the runner region, which would extend through the draft tube, and high magnitude of pressure fluctuations were observed in the center of the draft tube.


Author(s):  
Wenjie Wang ◽  
Shouqi Yuan ◽  
Ji Pei ◽  
Giorgio Pavesi ◽  
Yandong Gu

To investigate the influence of relative positions between a radial diffuser and an annular volute on the unsteady pressure at the centrifugal pump outlet, experiment tests were carried out with five positions between the diffuser and volute in an open test rig. Statistical and frequency spectrum analyses were carried out to obtain the pressure fluctuation amplitude range and the frequency domain respectively. The results showed that the relative position has greater influence on the pressure at large flow rate than at part load condition. The dominant frequency and the Power Spectrum Density (PSD) values are affected by diffuser azimuthal position and the harmonic frequencies are determined by number of blades and vanes. The investigation can give a reference to optimize the relative angle between diffuser and volute to reduce the pressure fluctuations.


2016 ◽  
Vol 26 (5) ◽  
pp. 1416-1432 ◽  
Author(s):  
Saman Rashidi ◽  
Javad Abolfazli Esfahani ◽  
Mohammad Sadegh Valipour ◽  
Masoud Bovand ◽  
Ioan Pop

Purpose – The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures. Design/methodology/approach – The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively. Findings – The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions. Originality/value – To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Nicolas Casimir ◽  
Xiangyuan Zhu ◽  
Markus Hundshagen ◽  
Gerhard Ludwig ◽  
Romuald Skoda

Abstract Three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes (URANS) flow simulations are conducted to investigate the highly unsteady flow field at part load operation of a centrifugal pump. By the availability of unsteady flow field measurement data in the impeller wake region, a thorough validation of the simulation method is performed. Grid independence of the results is ensured. Unsteady characteristics in terms of head and shaft power as well as transient blade loads are evaluated to assess the unsteady pump performance. Significant mis-loading of the blading is revealed when one blade passes the volute tongue and associated with the strong unsteady and 3D flow field in the impeller-volute tongue region. Negative radial velocity in the tongue region is the origin of a vortex at the blade pressure side and a subsequent pressure drop that leads to even temporally negative blade loading. The results provide a detailed insight in the complex part load flow field that might be utilized for an improved pump design. As a valuable secondary outcome, a comparison of results obtained by two widely used computational fluid dynamics (CFD) codes for pump flow simulation is provided, i.e., the commercial code ansyscfx and the branch foam-extend of the open source software openfoam. It is found that the results of both methods in terms of unsteady characteristics as well as local ensemble-averaged velocity field are consistent.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

Abstract Flow instability and its correlations with performance characteristics were investigated for a centrifugal pump with a volute. Unsteady three-dimensional Reynolds-averaged Navier–Stokes analysis was performed to analyze the flow and performance characteristics using the shear stress transport (SST) turbulence model. The grid dependence and temporal resolution were tested to evaluate the numerical uncertainties, and the numerical solutions were validated using experimental data. The total-to-static head coefficient, the impeller's total-to-static head coefficient, and the volute static pressure recovery coefficient were selected as performance parameters. To identify the flow instability, pressure fluctuations were monitored upstream of the impeller, at the volute inlet, and on the shroud wall of the impeller. Three different types of flow instability were detected in partial-load conditions: inside the volute, upstream of the impeller, and at the interface between the impeller and volute. The time-dependent flow structures were investigated to obtain insight into the onset of the flow instability. The correlation of the onset of the flow instability with the performance curves was discussed.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1734
Author(s):  
Xing Zhou ◽  
Changzheng Shi ◽  
Kazuyoshi Miyagawa ◽  
Hegao Wu ◽  
Jinhong Yu ◽  
...  

Under the circumstances of rapid expansion of diverse forms of volatile and intermittent renewable energy sources, hydropower stations have become increasingly indispensable for improving the quality of energy conversion processes. As a consequence, Francis turbines, one of the most popular options, need to operate under off-design conditions, particularly for partial load operation. In this paper, a prototype Francis turbine was used to investigate the pressure fluctuations and hydraulic axial thrust pulsation under four partial load conditions. The analyses of pressure fluctuations in the vaneless space, runner, and draft tube are discussed in detail. The observed precession frequency of the vortex rope is 0.24 times that of the runner rotational frequency, which is able to travel upstream (from the draft tube to the vaneless space). Frequencies of both 24.0 and 15.0 times that of the runner rotational frequency are detected in the recording points of the runner surface, while the main dominant frequency recorded in the vaneless zone is 15.0 times that of the runner rotational frequency. Apart from unsteady pressure fluctuations, the pulsating property of hydraulic axial thrust is discussed in depth. In conclusion, the pulsation of hydraulic axial thrust is derived from the pressure fluctuations of the runner surface and is more complicated than the pressure fluctuations.


2014 ◽  
Vol 6 ◽  
pp. 565061 ◽  
Author(s):  
Zhi-Jun Shuai ◽  
Wan-You Li ◽  
Xiang-Yuan Zhang ◽  
Chen-Xing Jiang ◽  
Feng-Chen Li

Flow induced vibration due to the dynamics of rotor-stator interaction in an axial-flow pump is one of the most damaging vibration sources to the pump components, attached pipelines, and equipment. Three-dimensional unsteady numerical simulations were conducted on the complex turbulent flow field in an axial-flow water pump, in order to investigate the flow induced vibration problem. The shear stress transport (SST) k-ω model was employed in the numerical simulations. The fast Fourier transform technique was adopted to process the obtained fluctuating pressure signals. The characteristics of pressure fluctuations acting on the impeller were then investigated. The spectra of pressure fluctuations were predicted. The dominant frequencies at the locations of impeller inlet, impeller outlet, and impeller blade surface are all 198 Hz (4 times of the rotation frequency 49.5 Hz), which indicates that the dominant frequency is in good agreement with the blade passing frequency (BPF). The first BPF dominates the frequency spectrum for all monitoring locations inside the pump.


AIP Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 035118 ◽  
Author(s):  
Chuan Wang ◽  
Xiaoke He ◽  
Weidong Shi ◽  
Xikun Wang ◽  
Xiuli Wang ◽  
...  

2019 ◽  
Vol 55 (8) ◽  
pp. 2277-2288 ◽  
Author(s):  
Xuanming Ren ◽  
Honggang Fan ◽  
Zhifeng Xie ◽  
Bing Liu

1999 ◽  
Vol 121 (3) ◽  
pp. 627-632 ◽  
Author(s):  
Kevin A. Kaupert ◽  
Thomas Staubli

Hysteresis in a pump characteristic results from instability phenomena involving complex three dimensional flow with recirculation. The unsteady flow field on the top and bottom branches of a hysteresis loop in a high specific speed (ωs = 1.7) centrifugal pump characteristic was experimentally evaluated. A hypothesis for recirculation zones and prerotation as power dissipaters is proposed for explaining the discrepancy in the pressure and shaft power hysteresis. The experimental investigation was performed in both the rotating and stationary frame. In the rotating frame 25 miniature pressure transducers mounted in an impeller blade passage were sampled with a telemetry system. In the stationary frame a fast response probe was implemented. The changing impeller flow field manifested itself between the two branches of the hysteresis with increasing stochastic pressure fluctuations. Using this information the position, size, and strength of the impeller recirculation was quantitatively determined. Theoretically the rate of change of useful hydraulic power in the hysteresis regime during transient pump operation was found to be a function of throttling rate. Quasi-steady behavior existed for slow throttling, |dφ/dt| < 0.005 s−1. A second-order nonlinear dependence on the throttle rate was determined for the change of useful flow power during the commencement/cessation of the impeller recirculation.


Sign in / Sign up

Export Citation Format

Share Document