MHD-mixed convection flow in a lid-driven trapezoidal cavity under uniformly/non-uniformly heated bottom wall

2017 ◽  
Vol 27 (6) ◽  
pp. 1231-1248 ◽  
Author(s):  
T. Javed ◽  
Z. Mehmood ◽  
Ioan Pop

Purpose The purpose of this paper is to analyze numerical results for heat transfer through mixed convection in an incompressible steady lid-driven fluid flow inside a trapezoidal cavity in the presence of a uniform magnetic field. Design/methodology/approach In this study, the authors have considered three different cases, in which left and right walls of the cavity are tilted at different angles of 0, 30 and 45 degrees, respectively. Both left and right side walls of the cavity are taken cold and the upper wall is insulated and assumed moving with constant speed, whereas the bottom wall is considered to be heated uniformly/non-uniformly. To eliminate pressure term, penalty method is applied to governing Navier–Stokes’ equations. The reduced equations are solved by Galerkin weighted residual technique of finite element method. Grid-independent results are obtained and shown in terms of plots for streamlines, isotherms, Nusselt number and average Nusselt number for a wide range of flow parameters, including Rayleigh numbers Ra, Prandtl number Pr and Hartman number Ha. Findings It has been observed that the effects of moving lid become negligible for Ra = 100,000, whereas increasing Rayleigh number results in stronger streamline circulation and convection dominant effects inside the enclosure. Local Nusselt number Nu along the bottom wall is observed to be maximum at edges and it reduces while moving toward the center from edges, and attains minimum value at the center of the bottom wall. Research limitations/implications The problem is modeled for laminar and incompressible flow, induced magnetic field has been considered negligibly small and local thermal equilibrium has been assumed. Originality/value In this investigation, the authors have presented new and original results for mixed convection flow inside a lid-driven trapezoidal cavity under the influence of a magnetic field. Hence, this study would be important for the researchers working in the area of heat transfer in cavity flows involving magnetic effects to become familiar with the flow behavior and properties.

2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 225-235
Author(s):  
Asifa Ilyas ◽  
Muhammad Ashraf

The main aim of the present work is to highlight the significances of periodic mixed convection flow and heat transfer characteristics along the surface of magnetized cone by exerting magnetic field exact at the surface of the cone. The numerical simulations of coupled non-dimensional equations are computed in terms of velocity field, temperature and magnetic field concentration and then used to examine the periodic components of skin friction, ?w, heat transfer, qw, and current density, jw, for various governing parameters. A nice periodic behavior of heat transfer qw is concluded for each value of mixed convection parameter, ?, but maximum periodicity is sketched at ? = 50. It is also computed that the lower value of magnetic Prandtl number ? = 0.1 gets poor amplitude in current density but highest amplitude is sketched for higher ? = 0.5. The behavior of heat and fluid-flow in the pres?ence of aligned magnetic field is associated with the phase angle and amplitude of oscillation. It is also noted that due to the increase in magnetic force parameter, ?, there are wave like disturbances generate within the fluid layers. These disturbances are basically hydromagnetic waves which becomes more prominent as the strength of magnetic force parameter is increased.


2016 ◽  
Vol 26 (7) ◽  
pp. 2235-2251 ◽  
Author(s):  
J. Rajakumar ◽  
P. Saikrishnan ◽  
A. Chamkha

Purpose The purpose of this paper is to consider axisymmetric mixed convection flow of water over a sphere with variable viscosity and Prandtl number and an applied magnetic field. Design/methodology/approach The non-similar solutions have been obtained from the origin of the streamwise co-ordinate to the point of zero skin friction using quasilinearization technique with an implicit finite-difference scheme. Findings The effect of M is not notable on the temperature and heat transfer coefficient when λ is large. The skin friction coefficient and velocity profile are enhance with the increase of MHD parameter M when λ is small. Viscous dissipation has no significant on the skin friction coefficient under MHD effect. For M=1, the movement of the slot or slot suction or slot injection do not cause any effect on flow separation. The slot suction and the movement of the slot in downstream direction delay the point of zero skin friction for M=0. Originality/value The present results are original and new for water boundary-layer flow over sphere in mixed convection flow with MHD effect and non-uniform mass transfer. So this study would be useful in analysing the skin friction and heat transfer coefficient on sphere of mixed convection flow of water boundary layer with MHD effect.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Noor ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose This paper aims to probe the problem of an unsteady mixed convection stagnation point flow and heat transfer past a stationary surface in an incompressible viscous fluid numerically. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation, which is then solved numerically by a Runge – Kutta – Fehlberg method with shooting technique and a collocation method, namely, the bvp4c function. Findings The effects of the governing parameters on the fluid flow and heat transfer characteristics are illustrated in tables and figures. It is found that dual (upper and lower branch) solutions exist for both the cases of assisting and opposing flow situations. A stability analysis has also been conducted to determine the physical meaning and stability of the dual solutions. Practical implications This theoretical study is significantly relevant to the applications of the heat exchangers placed in a low-velocity environment and electronic devices cooled by fans. Originality/value The case of suction on unsteady mixed convection flow at a three-dimensional stagnation point has not been studied before; hence, all generated numerical results are claimed to be novel.


Author(s):  
Najib Hdhiri ◽  
Brahim Ben Beya

Purpose The purpose of this study is to produce a numerical model capable of predicting the mixed convection flows in a rectangular cavity filled with a porous medium and to analyze the effects of several parameters on convective flow in porous media in a differentially heated enclosure. Design/methodology/approach The authors used the finite volume method. Findings The authors predicted and analyzed the effects of Richardson number, Darcy number, porosity values and Prandtl number in heat transfer and fluid flow. On other hand, the porosity and Richardson number values lead to reducing the heat transfer rate of mixed convection flow in a porous medium. Originality/value A comparison between Darcy–Brinkman–Forchheimer model and Darcy–Brinkman model is discussed and analyzed. The authors finally conclude that the Darcy–Brinkman model overestimates the heat transfer rate.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 225-235
Author(s):  
Asifa Ilyas ◽  
Muhammad Ashraf

The main aim of the present work is to highlight the significances of periodic mixed convection flow and heat transfer characteristics along the surface of magnetized cone by exerting magnetic field exact at the surface of the cone. The numerical simulations of coupled non-dimensional equations are computed in terms of velocity field, temperature and magnetic field concentration and then used to examine the periodic components of skin friction, ?w, heat transfer, qw, and current density, jw, for various governing parameters. A nice periodic behavior of heat transfer qw is concluded for each value of mixed convection parameter, ?, but maximum periodicity is sketched at ? = 50. It is also computed that the lower value of magnetic Prandtl number ? = 0.1 gets poor amplitude in current density but highest amplitude is sketched for higher ? = 0.5. The behavior of heat and fluid-flow in the pres?ence of aligned magnetic field is associated with the phase angle and amplitude of oscillation. It is also noted that due to the increase in magnetic force parameter, ?, there are wave like disturbances generate within the fluid layers. These disturbances are basically hydromagnetic waves which becomes more prominent as the strength of magnetic force parameter is increased.


Author(s):  
Obulesu Mopuri ◽  
Charankumar Ganteda ◽  
Bhagyashree Mahanta ◽  
Giulio Lorenzini

The main aim of this investigation is to study thermo diffusion, heat source/sink, Joule and chemical effects on heat transfer in MHD mixed convection flow and mass transfer past an infinite vertical plate with ohmic heating and viscous dissipation have been studied. We consider the mixed convection flow of an incompressible and electrically conducting viscous fluid such that x* -axis is taken along the plate in upward direction and y* -axis is normal to it. A transverse constant magnetic field is applied i.e., in the direction of y*-axis. Approximate solutions have been derived for velocity, temperature, concentration profiles, skin friction, rate of heat transfer and rate of mass transfer using perturbation technique. The obtained results are discussed with the help of graphs to observe the effect of various parameters like Grashof number (Gr), the modified Grashof number (Gm), magnetic parameter (M), Permeability parameter(K), Prandtl number (Pr), Heat Sink(Q), Radiation Parameter (F), Soret parameter (S0), Eckert number (E),Schmidt number(Sc) and Chemical reaction parameter(K0) taking two cases viz. Fluid velocity, temperature and concentration profiles are comparison with Pr=0.71(Air) and Pr =7 (Water) various parameters in cooled and heated plates. Case I: when Gr > 0 (flow on cooled plate), and Case II: Gr < 0, (flow on heated plate). Both the fluid velocity and concentration rising with the increment values of Soret parameter in the fluids Air and Water and also discussed skin friction, Nusselt number and Sherwood number in the fluid’s mercury, electrolytic solution, air and water. The novelty of this study is the consideration of simultaneous occurrence of radiation, heat absorption as well as thermo- diffusion in the magnetic field. It varies in several aspects such as non-dimensional parameters, analytical solutions, and graphical solutions, the analytic solution using the Perturbation technique, and numerical solution using Matlab software for the profile.


2015 ◽  
Vol 789-790 ◽  
pp. 282-286 ◽  
Author(s):  
Khalil Khanafer ◽  
M. El Haj Assad

Mixed convection flow and heat transfer characteristics in a lid-driven cavity with two isothermally heated circular cylinders inside are studied numerically using a finite element formulation based on the Galerkin method of weighted residuals. The top lid of the cavity is moving rightwards with a constant speed. The two cylinders are maintained at an isothermal hot temperature, while the walls of the cavity are maintained at a cold temperature. Comparisons of streamlines, isotherms and average Nusselt number are presented to show the impact of the Richardson number, non-dimensional radius of the cylinder, and the location of the cylinders on the transport phenomena within the cavity. The results of this investigation show that the presence of the cylinders results in an increase in the average Nusselt number compared with a case with no cylinder. The average Nusselt number increases with an increase in the Richardson number for all non-dimensional radius of the cylinder studied in this work. It is seen that changing the boundary condition on one of the cylinders from isothermal to adiabatic has minimal effect on the average Nusselt number around the walls of the cavity.


Sign in / Sign up

Export Citation Format

Share Document