Numerical study of laminar mixed convection flow in a lid-driven square cavity filled with porous media

Author(s):  
Najib Hdhiri ◽  
Brahim Ben Beya

Purpose The purpose of this study is to produce a numerical model capable of predicting the mixed convection flows in a rectangular cavity filled with a porous medium and to analyze the effects of several parameters on convective flow in porous media in a differentially heated enclosure. Design/methodology/approach The authors used the finite volume method. Findings The authors predicted and analyzed the effects of Richardson number, Darcy number, porosity values and Prandtl number in heat transfer and fluid flow. On other hand, the porosity and Richardson number values lead to reducing the heat transfer rate of mixed convection flow in a porous medium. Originality/value A comparison between Darcy–Brinkman–Forchheimer model and Darcy–Brinkman model is discussed and analyzed. The authors finally conclude that the Darcy–Brinkman model overestimates the heat transfer rate.

2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2019 ◽  
Vol 30 (5) ◽  
pp. 2781-2807
Author(s):  
Davood Toghraie ◽  
Ehsan Shirani

Purpose The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field. Design/methodology/approach The upper wall of the cavity is cold and the lower wall is warm. The effects of different values of Richardson number, Hartmann number, cavitation length and solid nanoparticles concentration on the flow and temperature field and heat transfer rate were evaluated. In this paper, the heat flux was assumed to be constant of 10 (W/m2) and the Reynolds number was assumed to be constant of 300 and the Hartmann number and the volume fraction of solid nanoparticles varied from 0 to 60 and 0 to 0.06, respectively. The Richardson number was considered to be 0.1, 1 and 5. Aspect ratios were 1, 1.5 and 2. Findings Comparison of the results of this paper with the results of the numerical and experimental studies of other researchers showed a good correlation. The results were presented in the form of velocity and temperature profiles, stream and isotherm lines and Nusselt numbers. The results showed that by increasing the Hartmann number, the heat transfer rate decreases. An increase from 0 to 20 in Hartmann number results in a 20 per cent decrease in Nusselt numbers, and by increasing the Hartmann number from 20 to 40, a 16 per cent decrease is observed in Nusselt number. Accordingly, it is inferred that by increasing the Hartmann number, the reduction in the Nusselt number is decreased. As the Richardson number increased, the heat transfer rate and, consequently, the Nusselt number increased. Therefore, an increase in the Richardson number results in an increase of the Nusselt number, that is, an increase in Richardson number from 0.1 to 1 and from 1 to 5 results in 37 and 47 per cent increase in Nusselt number, respectively. Originality/value Even though there have been numerous investigations conducted on convection in cavities under various configurations and boundary conditions, relatively few studies are conducted for the case of nanofluid mixed convection in square lid-driven cavity under the effect of magnetic field using two-phase model.


2016 ◽  
Vol 26 (7) ◽  
pp. 2235-2251 ◽  
Author(s):  
J. Rajakumar ◽  
P. Saikrishnan ◽  
A. Chamkha

Purpose The purpose of this paper is to consider axisymmetric mixed convection flow of water over a sphere with variable viscosity and Prandtl number and an applied magnetic field. Design/methodology/approach The non-similar solutions have been obtained from the origin of the streamwise co-ordinate to the point of zero skin friction using quasilinearization technique with an implicit finite-difference scheme. Findings The effect of M is not notable on the temperature and heat transfer coefficient when λ is large. The skin friction coefficient and velocity profile are enhance with the increase of MHD parameter M when λ is small. Viscous dissipation has no significant on the skin friction coefficient under MHD effect. For M=1, the movement of the slot or slot suction or slot injection do not cause any effect on flow separation. The slot suction and the movement of the slot in downstream direction delay the point of zero skin friction for M=0. Originality/value The present results are original and new for water boundary-layer flow over sphere in mixed convection flow with MHD effect and non-uniform mass transfer. So this study would be useful in analysing the skin friction and heat transfer coefficient on sphere of mixed convection flow of water boundary layer with MHD effect.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Noor ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose This paper aims to probe the problem of an unsteady mixed convection stagnation point flow and heat transfer past a stationary surface in an incompressible viscous fluid numerically. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation, which is then solved numerically by a Runge – Kutta – Fehlberg method with shooting technique and a collocation method, namely, the bvp4c function. Findings The effects of the governing parameters on the fluid flow and heat transfer characteristics are illustrated in tables and figures. It is found that dual (upper and lower branch) solutions exist for both the cases of assisting and opposing flow situations. A stability analysis has also been conducted to determine the physical meaning and stability of the dual solutions. Practical implications This theoretical study is significantly relevant to the applications of the heat exchangers placed in a low-velocity environment and electronic devices cooled by fans. Originality/value The case of suction on unsteady mixed convection flow at a three-dimensional stagnation point has not been studied before; hence, all generated numerical results are claimed to be novel.


2017 ◽  
Vol 377 ◽  
pp. 166-179 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
Lazarus Rundora

In the current paper, we investigate the thermal decomposition in an unsteady mixed convection flow of a reactive Casson fluid in a vertical channel filled with a saturated porous medium. The channel walls are assumed to be permeable with fluid injection through the left wall and suction out of the right wall. There is heat dissipation caused by exothermic chemical reaction within the flow system. The dimensionless form of the momentum and energy equations will be solved numerically using a semi-discretization finite difference method and a fourth order Runge-Kutta-Fehlberg integration scheme. The influence of the Casson fluid parameter, the buoyancy parameter, the porous medium shape parameter, the Eckert number, the suction/injection Reynolds number, Frank-Kamenetskii parameter and the Prandtl number on velocity and temperature profiles, skin friction and Nusselt number as well as the thermal stability criteria are presented graphically and discussed quantitatively. It is revealed that increasing the Casson fluid parameter enhances the flow velocity, the fluid temperature and the skin friction but has a diminishing effect on the wall heat transfer rate. The suction/injection Reynolds number, the porous medium shape parameter and the buoyancy parameter enhance the rate of heat transfer at the channel walls.


2015 ◽  
Vol 789-790 ◽  
pp. 282-286 ◽  
Author(s):  
Khalil Khanafer ◽  
M. El Haj Assad

Mixed convection flow and heat transfer characteristics in a lid-driven cavity with two isothermally heated circular cylinders inside are studied numerically using a finite element formulation based on the Galerkin method of weighted residuals. The top lid of the cavity is moving rightwards with a constant speed. The two cylinders are maintained at an isothermal hot temperature, while the walls of the cavity are maintained at a cold temperature. Comparisons of streamlines, isotherms and average Nusselt number are presented to show the impact of the Richardson number, non-dimensional radius of the cylinder, and the location of the cylinders on the transport phenomena within the cavity. The results of this investigation show that the presence of the cylinders results in an increase in the average Nusselt number compared with a case with no cylinder. The average Nusselt number increases with an increase in the Richardson number for all non-dimensional radius of the cylinder studied in this work. It is seen that changing the boundary condition on one of the cylinders from isothermal to adiabatic has minimal effect on the average Nusselt number around the walls of the cavity.


2019 ◽  
Vol 29 (9) ◽  
pp. 3535-3556 ◽  
Author(s):  
M.Z. Kiyani ◽  
Tasawar Hayat ◽  
I. Ahmad ◽  
Ahmed Alsaedi

Purpose The purpose of this study is to analyze the entropy generation in magnetohydrodynamics stagnation point mixed convection flow of Carreau nanofluid through porous medium. Design/methodology/approach The system is solved using the homotopy scheme. Findings Minimizing radiation, magnetic, permeability and temperature difference parameters responds to minimizing entropy production. Originality/value To the best of the authors’ knowledge, no such analysis has yet been reported.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Swati Mukhopadhyay ◽  
Anuar Ishak

An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.


Sign in / Sign up

Export Citation Format

Share Document