Unsteady mixed convection flow at a three-dimensional stagnation point

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Noor ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose This paper aims to probe the problem of an unsteady mixed convection stagnation point flow and heat transfer past a stationary surface in an incompressible viscous fluid numerically. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation, which is then solved numerically by a Runge – Kutta – Fehlberg method with shooting technique and a collocation method, namely, the bvp4c function. Findings The effects of the governing parameters on the fluid flow and heat transfer characteristics are illustrated in tables and figures. It is found that dual (upper and lower branch) solutions exist for both the cases of assisting and opposing flow situations. A stability analysis has also been conducted to determine the physical meaning and stability of the dual solutions. Practical implications This theoretical study is significantly relevant to the applications of the heat exchangers placed in a low-velocity environment and electronic devices cooled by fans. Originality/value The case of suction on unsteady mixed convection flow at a three-dimensional stagnation point has not been studied before; hence, all generated numerical results are claimed to be novel.

2007 ◽  
Vol 129 (9) ◽  
pp. 1212-1216 ◽  
Author(s):  
A. Ishak ◽  
R. Nazar ◽  
N. M. Arifin ◽  
I. Pop

The steady magnetohydrodynamic (MHD) mixed convection stagnation-point flow toward a vertical heated surface is investigated in this study. The external velocity impinges normal to the vertical surface and the surface temperature are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions also exist for the assisting flow, besides that usually reported in the literature for the opposing flow.


2008 ◽  
Vol 13 (1) ◽  
pp. 31-46 ◽  
Author(s):  
F. S. Ibrahim

An analysis is preformed to study the heat transfer characteristic of unsteady mixed convection flow of a viscous fluid in the vicinity of a stagnation point of a general three-dimensional body embedded in a porous media. The velocity in the potential flow is assumed to vary arbitrary with time. The non-Darcy effects including convective, boundary and inertial effects are included in the analysis. Both nodal-point region (0 ≤ c ≤ 1), where c = b/a is the ratio of the velocity gradients in y and x directions in the potential flow and saddle point region (−1 ≤ c < 0) are considered. The semisimilar solutions of the momentum and energy equations are obtained numerically using finite difference method. Also a self-similar solution is found when the velocity in the potential flow and the wall temperature vary with time in particular manner. Many results are obtained and a representative set is displayed graphically to illustrate the influence of the physical parameters on the surface shear stresses and the surface heat transfer.


Author(s):  
Tasawar Hayat ◽  
Bilal Ashraf ◽  
Sabir Ali Shehzad ◽  
A. Alsaedi ◽  
N. Bayomi

Purpose – The purpose of this paper is to investigate the three-dimensional mixed convection flow of viscoelastic nanofluid induced by an exponentially stretching surface. Design/methodology/approach – Similarity transformations are utilized to reduce the partial differential equations into the ordinary differential equations. The corresponding non-linear problems are solved by homotopy analysis method. Findings – The authors found that an increase in thermophoresis and Brownian motion parameter enhance the temperature. Here thermal conductivity of fluid is enhanced due to which higher temperature and thicker thermal boundary layer thickness is obtained. Practical implications – Heat and mass transfer effects in mixed convection flow over a stretching surface have numerous applications in the polymer technology and metallurgy. Such flows are encountered in metallurgical processes which involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid and that in the process of drawing, these strips are sometimes stretched. Originality/value – Three-dimensional flows over an exponentially stretching surface are very rare in the literature. Three-dimensional flow of viscoelastic nanofluid due to an exponentially stretching surface is first time investigated.


Author(s):  
Ioan Pop ◽  
Kohi Naganthran ◽  
Roslinda Nazar

Purpose – The purpose of this paper is to analyse numerically the steady stagnation-point flow of a viscous and incompressible fluid over continuously non-aligned stretching or shrinking surface in its own plane in a water-based nanofluid which contains three different types of nanoparticles, namely, Cu, Al2O3 and TiO2. Design/methodology/approach – Similarity transformation is used to convert the system of boundary layer equations which are in the form of partial differential equations into a system of ordinary differential equations. The system of similarity governing equations is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in Matlab software. Findings – Unique solution exists when the surface is stretched and dual solutions exist as the surface shrunk. For the dual solutions, stability analysis has revealed that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. The effect of non-alignment is huge for the shrinking surface which is in contrast with the stretching surface. Practical implications – The results obtained can be used to explain the characteristics and applications of nanofluids, which are widely used as coolants, lubricants, heat exchangers and micro-channel heat sinks. This problem also applies to some situations such as materials which are manufactured by extrusion, production of glass-fibre and shrinking balloon. In this kind of circumstance, the rate of cooling and the stretching/shrinking process play an important role in moulding the final product according to preferable features. Originality/value – The present results are original and new for the study of fluid flow and heat transfer over a stretching/shrinking surface for the problem considered by Wang (2008) in a viscous fluid and extends to nanofluid by using the Tiwari and Das (2007) model.


Sign in / Sign up

Export Citation Format

Share Document