divergent channel
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
S. Ahmad ◽  
Samreen Sheriff ◽  
Aisha Anjum ◽  
M. Farooq

The utility of convergent/divergent channel driven flow to improve the effectiveness of heat transport rate in industrial and engineering systems is diverse. This motivates us to disclose hybrid nanofluid flow features through non-parallel walls under hydro-magnetic aspect. The modified Darcian (Darcy–Forchheimer) expression is utilized for formulation. Reflection of improved Darcian form modifies the expression of velocity via square of velocity term. The effects of temperature jump and viscous dissipation are implemented in energy expression. Additionally, the slip flow phenomenon under the stretching/shrinking characteristics is studied. The analysis is carried out under the theory of boundary layer. Significant variables are implemented to acquire the dimensionless mathematical expressions. Dimensionless problem is tackled through a well-known homotopy technique. To observe the upshots of numerous pertinent parameters upon non-dimensional profiles of velocity and temperature, the graphs are plotted for both convergent/divergent channels. The heat transfer rate as well as drag force is also analyzed. In this study, it is concluded that temperature field rises in both divergent/convergent channels for dominant thermal slip parameter. Moreover, inertia parameter effects are seen weaker in converging channel for the velocity profile, while opposite trend is observed for diverging channel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yun-Jie Xu ◽  
Mubbashar Nazeer ◽  
Farooq Hussain ◽  
M. Ijaz Khan ◽  
M. K. Hameed ◽  
...  

AbstractThe multi-phase flow of non-Newtonian through a divergent channel is studied in this article. Jeffrey fluid is considered as the base liquid and tiny gold particles for the two-phase suspension. Application of external electric field parallel to complicated capillary with net surface charge density causes the bulk motion of the bi-phase fluid. In addition to, electro-osmotic flow with heat transfer, the simultaneous effects of viscous dissipation and nonlinear thermal radiation have also been incorporated. Finally, cumbersome mathematical manipulation yields a closed-form solution to the nonlinear differential equations. Parametric study reveals that more thermal energy is contributed in response to Brinkman number which significantly assists gold particles to more heat attain high temperature, as the remedy for compressed or swollen capillaries/arteries.


2021 ◽  
Vol 12 (2) ◽  
pp. 79-92
Author(s):  
Ashik Chandra Das ◽  
Qazi Novera Tansue Nasa

The present study focused on the entropy generation as well as the heat transfer rate and velocity profiles of a nanofluid of the Jeffery-Hamel flow, especially for convergent-divergent channels. First, the governing dimensional partial differential equations have been transformed into a system of non-dimensional ordinary differential equations. The Power series method has been used to solve these non-dimensional governing equations and the Hermite-Pade approximation has been applied for analyzing them. The effect of various physical parameters such as channel angle, Reynolds number, Hartmann number, nanoparticle solid volume frictions and Eckert number have been investigated for the velocity profiles, heat transfer and entropy generation. Here, Cu has been used as the solid nanoparticle and water has been used as the base fluid. It is interesting to remark that the entropy generation of the whole system increased at the two walls and a significant effect could be noticed on the heat transfer rate and velocity profiles. Journal of Engineering Science 12(2), 2021, 79-92


2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Ying-Qing Song ◽  
Khurram Javid ◽  
Sami Ullah Khan ◽  
M. Ijaz Khan ◽  
Tian-Chuan Sun ◽  
...  

Author(s):  
HT Basha ◽  
R Sivaraj

Exploring the movement of blood in a blood vessel has been fascinated by clinicians and biomedical researchers because it is predominant in cell tissue engineering, drug targeting and various treatments like hypothermia, hyperthermia, and cancer. It is noticed that numerous non-Newtonian rheological fluids like Carreau fluid, tangent hyperbolic fluid, Eyring–Powell fluid and viscoelastic fluid manifest the characteristics of blood flow. Further, the investigation of entropy generation can be used to raise the performance of medical equipments. Consequently, the present mathematical model scrutinizes the transport characteristics and entropy generation of the peristaltic Eyring–Powell nanofluid in a permeable vertical divergent channel in the presence of dissipation and linear radiation. The non-similar variables are employed to convert the dimensional partial differential equations into dimensionless form which are tackled by the Homotopy perturbation method. The impacts of emerging parameters like Eyring–Powell parameters, left and right wall amplitudes, thermophoresis, mean flow rate, radiation, permeability parameter, Brownian motion, Eckert number, Hartman number on Eyring–Powell nanofluid axial velocity, temperature, and concentration are manifested. Present results disclose that the thermal Grashof number highly inflates the pressure rise. Eyring–Powell nanofluid temperature reduces for uplifting the linear radiation parameter. Growing values of the non-uniform parameter lead to move the trapping bolus towards the left and right wall. The total entropy generation diminishes for magnifying the temperature difference parameter.


Author(s):  
Seyyed Morteza Moghimi ◽  
Mehran Khaki Jamie ◽  
Mohammad Hasan Taheri ◽  
Morteza Abbasi

Due to the pressure gradient increasing downstream, the boundary layer separation phenomena may occur on the divergent channel flow wall. Still, several methods have been applied to control or postponed the separation. Exerting a magnetic field on the fluid flow is one solution. In the present research, we aim to investigate the impact of magnetic fields on the separation location in a divergent channel numerically. Hence, the finite volume method using the OpenFOAM CFD toolbox is employed, and a code for 2-D divergent channel flow under a non-uniform magnetic field is developed. The obtained results have been validated in comparison with previous studies. The results are presented for a test case of the channel with divergence half-angle equals 2.5°, 30 cm length, and 2 cm inlet height. It is demonstrated when Ha increases from 0 to 2, the separation points for liquid lithium fluid flow with Re = 208.33 are postponed from 12.93 cm to 23.18 cm. Moreover, it is shown that the separation phenomena disappear entirely for the Ha value of more than 3.


Author(s):  
Khurram Javid ◽  
Umar F. Alqsair ◽  
Mohsan Hassan ◽  
M. M. Bhatti ◽  
Touqeer Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document