Numerical optimization of obstructed high temperature heat exchanger for recovery from the flue gases by considering ash fouling characteristics

2019 ◽  
Vol 30 (5) ◽  
pp. 2273-2303
Author(s):  
Ali Akbar Abbasian Arani ◽  
Ali Arefmanesh ◽  
Hamidreza Ehteram

Purpose The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of ash fouling characteristics during the transient/steady-state simulation and optimization of a 3D complex heat exchanger equipped with inner plain fins and side plate fins are studied. Design/methodology/approach For the particle dispersion modeling, the discrete phase model is applied and the flow field has been solved using SIMPLE algorithm. Findings According to obtained results, for the recuperator equipped with combine inner plain and side plate fins, determination of ash fouling characteristics is really important, effective and determinative. It is clear that by underestimating the ash fouling characteristics, the achieved results are wrong and different with reality. Originality/value Finally, the configuration with inner plain fins with characteristics of: di =5 mm, do = 6 mm, dg = 2 mm, dk = 3 mm and NIPFT = 9 and side plate fins with characteristics of: TF = 3 mm, PF = 19 mm, NSPF = 17·2 = 34, WF = 10 mm, HF = 25 mm, LF = 24 mm and ß = 0° is introduced as the optimum model with the best performance among all studied configurations.

Author(s):  
Wojciech P. Adamczyk ◽  
Pawel Kozolub ◽  
Gabriel Węcel ◽  
Arkadiusz Ryfa

Purpose – The purpose of this paper is to show possible approaches which can be used for modeling complex flow phenomena caused by swirl burners combined with simulating coal combustion process using air- and oxy-combustion technologies. Additionally, the response of exist boiler working parameter on changing the oxidizer composition from air to a mixture of the oxygen and recirculated flue gases is investigated. Moreover, the heat transfer in the superheaters section of the boiler was taken into account by modeling of the heat exchange process between continuum phase and three stages of the steam superheaters. Design/methodology/approach – An accurate solution of the flow field is required in order to predict combustion phenomena correctly for numerical simulations of the industrial pulverized coal (PC) boilers. Nevertheless, it is a very demanding task due to the complicated swirl burner construction and complex character of the flow. The presented simulations were performed using the discrete phase model for tracking particles and combustion phenomena in a dispersed phase, whereas the Eulerian approach was applied for the volatile combustion process modeling in a gaseous phase. Findings – Applying the air- to oxy-combustion technology the temperature in the combustion chamber, decreased for investigated oxidizer compositions. This was caused by the higher heat capacity of flue gases which also influences on the level of the heat flux at the boiler walls. Simulations shows that increasing the O2 concentration to 30 percent of volume base in the oxidizer mixture provided the similar combustion conditions as those for the conventional air firing. Moreover, the evaluated results give a good overview of differences between approaches used for complex swirl burners simulations. Practical implications – Nowadays, the numerical techniques such as computational fluid dynamic (CFD) can be seen as an useful engineering tool for design and processes optimization purposes. The application of the CFD gives a possibility to predict the combustion phenomena in a large industrial PC boiler and investigate the impact of changing the combustion technology from a conventional air firing to oxy-fuel combustion. Originality/value – This paper gives good overview on existing technique, approaches used for modeling PC boiler equipped with complex swirl burners. Additionally, the novelty of this work is application of the heat exchanger model for predicting heat loses in convective section of the boiler. This usually is not taken into account during simulations. The reader can also find basic concept of oxy-combustion technology, and their impact on boiler working conditions.


2017 ◽  
Vol 16 (5) ◽  
pp. 1107-1113 ◽  
Author(s):  
Andrei Burlacu ◽  
Constantin Doru Lazarescu ◽  
Adrian Alexandru Serbanoiu ◽  
Marinela Barbuta ◽  
Vasilica Ciocan ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changyang Li ◽  
Huapeng Wu ◽  
Harri Eskelinen ◽  
Haibiao Ji

Purpose This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied. Design/methodology/approach First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation. Findings Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements. Originality/value This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faraz Afshari ◽  
Azim Doğuş Tuncer ◽  
Adnan Sözen ◽  
Halil Ibrahim Variyenli ◽  
Ataollah Khanlari ◽  
...  

Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.


2019 ◽  
Vol 111 ◽  
pp. 01037
Author(s):  
Yunus Emre Cetin ◽  
Mete Avci ◽  
Orhan Aydin

In this study, particle decay in a cleanroom is investigated numerically. A commercial CFD package, FLUENT, is used in the analysis. The governing equations are solved by using the k-å turbulence model. For particle dispersion, the discrete phase model (DPM) is applied. Four different air change rates (3-10-25-43 ACH) with three particle diameters (0,5-5-10 ìm) are considered. It is shown that 10 ACH satisfies the needs in terms of recovery time.


2016 ◽  
Vol 33 (8) ◽  
pp. 2504-2529 ◽  
Author(s):  
Babak Lotfi ◽  
Bengt Sunden ◽  
Qiu-Wang Wang

Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.


Sign in / Sign up

Export Citation Format

Share Document