MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose This paper aims to investigate the flow and heat transfer characteristics of a hybrid nanofluid (Cu-Al2O3/water) in the presence of magnetohydrodynamics and thermal radiation over a permeable moving surface. Design/methodology/approach By choosing appropriate similarity variables, the partial differential equations are transformed into a system of linear equations which are solved by using the boundary value problem solver (bvp4c) in MATLAB. The implementation of stability analysis verifies the achievable result of the first solution which is considered stable while the second solution is unstable. Findings The findings revealed that the presence of a magnetic field and suction slows down the fluid motion because of the synchronism of the magnetic and electric field occurred from the formation of the Lorentz force. Also, the enhancement of the thermal radiation parameter escalates the heat transfer rate of the current study. Originality/value The present study is addressing the problem of MHD flow and heat transfer analysis of a hybrid nanofluid towards a permeable moving surface, with the consideration of the thermal radiation effect. The authors show that in both cases of assisting and opposing flow, there exist dual solutions within a specific range of the moving parameters. A stability analysis approved that only one of the solutions are physically relevant.

Author(s):  
Mohammad Ghalambaz ◽  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Ioan Pop

Purpose This study aims to study the mixed convection flow and heat transfer of Al2O3-Cu/water hybrid nanofluid over a vertical plate. Governing equations for conservation of mass, momentum and energy for the hybrid nanofluid over a vertical flat plate are introduced. Design/methodology/approach The similarity transformation approach is used to transform the set of partial differential equations into a set of non-dimensional ordinary differential equations. Finite-deference with collocation method is used to integrate the governing equations for the velocity and temperature profiles. Findings The results show that dual solutions exist for the case of opposing flow over the plate. Linear stability analysis was performed to identify a stable solution. The stability analysis shows that the lower branch of the solution is always unstable, while the upper branch of the solution is always stable. The results of boundary layer analysis are reported for the various volume fractions of composite nanoparticles and mixed convection parameter. The outcomes show that the composition of nanoparticles can notably influence the boundary layer flow and heat transfer profiles. It is also found that the trend of the variation of surface skin friction and heat transfer for each of the dual solution branches can be different. The critical values of the mixed convection parameter, λ, where the dual solution branches joint together, are also under the influence of the composition of hybrid nanoparticles. For instance, assuming a total volume fraction of 5 per cent for the mixture of Al2O3 and Cu nanoparticles, the critical value of mixing parameter of λ changes from −3.1940 to −3.2561 by changing the composition of nanofluids from Al2O3 (5 per cent) + Cu (0%) to Al2O3 (2.5%) + Cu (2.5 per cent). Originality/value The mixed convection stability analysis and heat transfer study of hybrid nanofluids for a stagnation-point boundary layer flow are addressed for the first time. The introduced hybrid nanofluid model and similarity solution are new and of interest in both mathematical and physical points of view.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ubaidullah Yashkun ◽  
Khairy Zaimi ◽  
Nor Ashikin Abu Bakar ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the presence of suction and thermal radiation effects. Design/methodology/approach Mathematical equations are transformed into pairs of self-similarity equations using similarity transformation. Boundary value problem solver (bvp4c) in MATLAB was adopted to solve the system of reduced similarity equations. In this study, the authors particularly examine the flow and heat transfer properties for different values of suction and thermal radiation parameters using single-phase nanofluid model. A comparison of the present results shows a good agreement with the published results. Findings It is noticed that the efficiency of heat transfer of hybrid nanofluid (Cu-Al2O3/H2O) is greater than the nanofluid (Cu/H2O). Furthermore, it is also found that dual solutions exist for a specific range of the stretching/shrinking parameter with different values of suction and radiation parameters. The results indicate that the skin friction coefficient and the local Nusselt number increase with suction effect. The values of the skin friction coefficient increases, but the local Nusselt number decreases for the first solution with the increasing of thermal radiation parameter. It is also observed that suction and thermal radiation widen the range of the stretching/shrinking parameter for which the solution exists. Practical implications In practice, the investigation on the flow and heat transfer of MHD hybrid nanofluid through a stretching/shrinking sheet with suction and thermal radiation effects is very important and useful. The problems related to hybrid nanofluid has numerous real-life and industrial applications, for example microfluidics, manufacturing, transportation, military and biomedical, etc. Originality/value In specific, this study focused on increasing thermal conductivity using a hybrid nanofluid mathematical model. This paper is able to obtain the dual solutions. To the best of author’s knowledge, this study is new and there is no previous published work similar to present study.


Author(s):  
Emad H. Aly ◽  
Ioan Pop

Purpose The purpose of this study is to present both effective analytic and numerical solutions to MHD flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid with suction/injection and convective boundary conditions. Water (base fluid) nanoparticles of alumina and copper were considered as a hybrid nanofluid. Design/methodology/approach Proper-similarity variables were applied to transform the system of partial differential equations into a system of ordinary (similarity) differential equations. Exact analytical solutions were then presented for the dimensionless stream and temperature functions. Further, the authors introduce a very nice analytic and numerical solutions for both small and large values of the magnetic parameter. Findings It was found that no/unique/two equal/dual physical solutions exist for the investigated boundary value problem. The physically realizable practice of these solutions depends on the range of the governing parameters. For a stretching/shrinking sheet, it was deduced that a hybrid nanofluid works as a cooler on increasing some of the investigated parameters. Moreover, in the case of a shrinking sheet, the first solutions of hybrid nanofluid are stable and physically realizable rather than the nanofluid, while those of the second solutions are not for both hybrid nanofluid and nanofluid. Originality/value The present results for the hybrid nanofluids are new and original, as they successfully extend (generalize) the problems previously considered by different authors for the case of nanofluids.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose The investigation of fluid flow and heat transfer is incredibly significant in the present era, particularly in the engineering and manufacturing industries. Hence, this study aims to concern with analysing the unsteady stagnation point flow towards a permeable stretching/shrinking Riga plate of Al2O3-Cu/H2O. The effect of thermal radiation on the boundary layer flow is also taken into account. Design/methodology/approach The multi-variable differential equations with partial derivatives are transformed into third-order and second-order differential equations by applying appropriate transformations. The reduced mathematical model is solved in the MATLAB system by using the bvp4c procedure. This solution approach is capable of producing multiple solutions once the necessary assumptions are provided. Findings The results of various control parameters were analysed, and it has been observed that raising the solution viscosity from 0% to 0.5% and 1% improves the coefficient of skin friction and thermal conductivity by almost 1.0% and 1.9%. Similar response and observation can be witnessed in the addition of modified Hartmann number where the highest values dominate about 10.7% improvement. There is a substantial enhancement in the heat transfer rate, approximately 1.8% when the unsteadiness parameter leads around 30% in the boundary layer flow. In contrast, the increment in thermal radiation promotes heat transfer deterioration. Further, more than one solution is proven, which invariably leads to a stability analysis, which validates the first solution’s feasibility. Originality/value The present results are new and original for the study of flow and heat transfer on unsteady stagnation point flow past a permeable stretching/shrinking Riga plate in Al2O3-Cu/H2O hybrid nanofluid with thermal radiation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tawfeeq Abdullah Alkanhal

Purpose This paper aims to disperse the silicon dioxide in water (as the mono nanofluid [MN]) and then, carbon nanotube (CNT)-silica composite in water (as the hybrid nanofluid [HN]). Design/methodology/approach Nanofluids have gained lots of attention through the recent years. Due to their usage in the industries and also medical applications, they have high protentional to be studied in different aspects. The most common study for the nanofluids is to understand the heat transfer capacity for each material in each fluid. These material(s) or fluid(s) can be one (mono nanofluid) or more than one (hybrid nanofluid). Findings The mixture of two solids is to assess the unique properties of each material and also to decrease the cost of experiments. The heat transfers for both MN and HN were measured at volume fractions up to 1.0%, and temperatures up to 50°C. Also, the heat transfers were compared. By more CNT, thermal conductivity was enhanced about 17.39% (from 12.42% of MN to 29.81% of HN). Originality/value X-Ray diffraction and field emission scanning electron microscope (FESEM) were examined for mono solids and the composite. After the experimental study, for MN and HN, four novel correlations calculated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


2018 ◽  
Vol 28 (11) ◽  
pp. 2650-2663 ◽  
Author(s):  
Fatinnabila Kamal ◽  
Khairy Zaimi ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to analyze the behavior of the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet in the presence of the viscous dissipation and heat source effects.Design/methodology/approachThe governing partial differential equations are converted into ordinary differential equations by similarity transformations before being solved numerically using the bvp4c function built in Matlab software. Effects of suction/injection parameter and heat source parameter on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented in the forms of tables and graphs. A temporal stability analysis will be conducted to verify which solution is stable for the dual solutions exist for the shrinking case.FindingsThe analysis indicates that the skin friction coefficient and the local Nusselt number as well as the velocity and temperature were influenced by suction/injection parameter. In contrast, only the local Nusselt number, which represents heat transfer rate at the surface, was affected by heat source effect. Further, numerical results showed that dual solutions were found to exist for the certain range of shrinking case. Then, the stability analysis is performed, and it is confirmed that the first solution is linearly stable and has real physical implication, while the second solution is not.Practical implicationsIn practice, the study of the steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in the presence of heat source effect is very crucial and useful. The problems involving fluid flow over stretching or shrinking surfaces can be found in many industrial manufacturing processes such as hot rolling, paper production and spinning of fibers. Owing to the numerous applications, the study of stretching/shrinking sheet was subsequently extended by many authors to explore various aspects of skin friction coefficient and heat transfer in a fluid. Besides that, the study of suction/injection on the boundary layer flow also has important applications in the field of aerodynamics and space science.Originality/valueAlthough many studies on viscous fluid has been investigated, there is still limited discoveries found on the heat source and suction/injection effects. Indeed, this paper managed to obtain the second (dual) solutions and stability analysis is performed. The authors believe that all the results are original and have not been published elsewhere.


2020 ◽  
Vol 30 (10) ◽  
pp. 4583-4606 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

Purpose This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat plate. Design/methodology/approach The similarity transformation which fulfils the continuity equation is opted to transform the coupled momentum and energy equations into the nonlinear ordinary differential equations. Numerical solutions which are elucidated in the tables and graphs are obtained using the bvp4c solver. Findings Non-unique solutions (first and second) are feasible for both stretching and shrinking cases within the specific values of the parameters. First solution is the physical/real solution based on the execution of stability analysis. An upsurge of the ratio of the ambient fluid strain rate to the plate strain rate can delay the boundary layer separation, whereas a boost of the ratio of the ambient fluid shear rate to the plate strain rate only accelerates the separation of boundary layer. The heat transfer rate of hybrid nanofluid is greater for the stretching case than the shrinking case. However, for the shrinking case, the heat transfer rate intensifies with the increment of the copper (Cu) nanoparticles volume fraction, whereas a contrary result is found for the stretching case. Originality/value The present numerical results are original and new. It can contribute to other researchers on electing the relevant parameters to optimize the heat transfer process in the modern industry, and the right parameters to generate non-unique solution so that no misjudgment on flow and heat transfer features.


Sign in / Sign up

Export Citation Format

Share Document