Numerical simulation of cavitation shedding flow around a hydrofoil using Partially-Averaged Navier-Stokes model

Author(s):  
Desheng Zhang ◽  
Weidong Shi ◽  
Dazhi Pan ◽  
Guangjian Zhang

Purpose – The purpose of this paper is to predict the unstable cavitation shedding flow around a 2D Clark-y hydrofoil. Design/methodology/approach – The paper studies Partially Averaged Navier-Stokes (PANS) model which was employed in the two-phase flow with a homogeneous cavitation model. Findings – Maximum density ratio affects the mass transfer rate between the liquid and the vapor significantly. The cavitating flow predicted by PANS model can resolve more turbulent scales by decreasing the parameter fk. Originality/value – The accuracy of numerical prediction is improved by increasing the maximum density ratio and decreasing fk.

2006 ◽  
Vol 49 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Tomio OKAWA ◽  
Naoya SHIMADA ◽  
Akio KOTANI ◽  
Isao KATAOKA

2021 ◽  
Vol 19 (3) ◽  
pp. 295-308
Author(s):  
Jin Zunlong ◽  
Liu Yonghao ◽  
Dong Rui ◽  
Wang Dingbiao ◽  
Chen Xiaotang

Abstract A numerical study of the gas–liquid two-phase flow and mass transfer in a square microchannel with a T-junction is carried out in this work. Through numerical simulation methods, the flow patterns of bubble flow, slug flow and annular flow are determined. By proposing a new flow pattern conversion relationship with different media and different speeds, 100 sets of CO2-water flow patterns and 100 sets of CO2-ethanol flow patterns are obtained. The effects of surface tension on flow pattern, bubble length and liquid plug length are studied. The pressure distribution and pressure drop are analyzed, and mass transfer is obtained through slug flow simulation, and the influencing factors of gas–liquid mass transfer are studied. The results show that the effect of surface tension on the length of the bubble and the length of the liquid plug is completely opposite, the pressure distribution is stepped, and the pressure drop increases with the increase of the gas–liquid velocity. In addition, it was found that the volumetric mass transfer coefficients of the bubble cap and the liquid film gradually decreased with time, and eventually stabilized. The increase in bubble velocity accelerates the mass transfer rate, while the increase in unit cell length slows the mass transfer rate. However, the influence of film thickness and liquid film length on mass transfer varies with time.


2019 ◽  
Vol 71 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Lili Wang ◽  
Qingliang Zeng ◽  
Changhou Lu ◽  
Peng Liang

Purpose This paper aims to reveal the cavitation characteristics of three oil wedges sleeve bearing and set the theoretical and experimental basis for defining the oil film boundary condition. Design/methodology/approach Computational fluid dynamics model of three oil wedges sleeve bearings based on the Navier–Stokes equation is set using Fluent considering turbulent situation and two-phase flow theory. The cavitation characteristics of bearing is investigated by taking pictures of experiment. Findings The rupture region of oil film and the contours of air volume fraction increase distinctly with the increase of rotating speed and the decrease of input pressure. The critical rotating speed of cavitation occurrence and oil film pressure increases with the increase of input pressure. The change trend of experiment cavitation with the rotating speed and input pressure is consistent with theoretical cavitation in general. Originality/value The finite element model of three oil wedges sleeve bearings is established based on the Navier-Stokes calculation equation of the fluid, two-phase flow theory and turbulent model. Sleeve bearing is transparent, the pictures of cavitation can be easily taken by high-speed camera, the cavitation characteristics of bearing is studied by experiment. The cavitation performance of three oil wedges bearings is studied with the change of input pressure and rotating speed, the change trend is basically consistent for theory and experiment. The study on critical rotating speed of cavitation occurrence is benefit for defining the oil film boundary condition.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 226
Author(s):  
Rashal Abed ◽  
Mohamed M. Hussein ◽  
Wael H. Ahmed ◽  
Sherif Abdou

Airlift pumps can be used in the aquaculture industry to provide aeration while concurrently moving water utilizing the dynamics of two-phase flow in the pump riser. The oxygen mass transfer that occurs from the injected compressed air to the water in the aquaculture systems can be experimentally investigated to determine the pump aeration capabilities. The objective of this study is to evaluate the effects of various airflow rates as well as the injection methods on the oxygen transfer rate within a dual injector airlift pump system. Experiments were conducted using an airlift pump connected to a vertical pump riser within a recirculating system. Both two-phase flow patterns and the void fraction measurements were used to evaluate the dissolved oxygen mass transfer mechanism through the airlift pump. A dissolved oxygen (DO) sensor was used to determine the DO levels within the airlift pumping system at different operating conditions required by the pump. Flow visualization imaging and particle image velocimetry (PIV) measurements were performed in order to better understand the effects of the two-phase flow patterns on the aeration performance. It was found that the radial injection method reached the saturation point faster at lower airflow rates, whereas the axial method performed better as the airflow rates were increased. The standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) were calculated and were found to strongly depend on the injection method as well as the two-phase flow patterns in the pump riser.


2017 ◽  
Vol 34 (3) ◽  
pp. 709-724 ◽  
Author(s):  
Amirmahdi Ghasemi ◽  
R. Nikbakhti ◽  
Amirreza Ghasemi ◽  
Faraz Hedayati ◽  
Amir Malvandi

Purpose A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach The full two-dimensional Navier–Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full two-dimensional Navier–Stokes equations are solved on a regular structured grid to resolve the flow field. Level set and immersed boundary methods are used to capture the free surface of liquid and solid object, respectively. A proper contact angle between the solid object and the fluid is used to enhance the accuracy of the advection of the mass and momentum of the fluids in three-phase cells. Findings The computational tool is verified based on numerical and experimental data with two scenarios: a cylinder falling into a rectangular domain due to gravity and a dam breaking in the presence of a fixed obstacle. In the former validation simulation, the accuracy of the immersed boundary method is verified. However, the accuracy of the level set method while the computational tool can model the high-density ratio is confirmed in the dam-breaking simulation. The results obtained from the current method are in good agreement with experimental data and other numerical studies. Practical/implications The computational tool is capable of being parallelized to reduce the computational cost; therefore, an OpenMP is used to solve the flow equations. Its application is seen in the following: wind energy conversion, interaction of solid object such as wind turbine with water waves, etc. Originality/value A high efficient CFD approach method is introduced to capture the interaction of solid object with a two-phase flow where they have high-density ratio. The current method has the ability to efficiently be parallelized.


2017 ◽  
Vol 28 (09) ◽  
pp. 1750120 ◽  
Author(s):  
Yong Peng ◽  
Yun Fei Mao ◽  
Bo Wang ◽  
Bo Xie

Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P–R) and Carnahan and Starling (C–S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P–R and C–S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P–R and C–S EOS agree with the analytical solutions although P–R EOS may perform better. The prediction of liquid phase by P–R EOS is more accurate than that of air phase and the contrary is true for C–S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting [Formula: see text]. The P–R EOS can achieve larger maximum density ratio than C–S EOS under the same [Formula: see text]. Besides, no matter the C–S EOS or the P–R EOS, if [Formula: see text] tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P–R is larger than that of C–S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.


Sign in / Sign up

Export Citation Format

Share Document