Numerical study on gas–liquid two-phase flow and mass transfer in a microchannel

2021 ◽  
Vol 19 (3) ◽  
pp. 295-308
Author(s):  
Jin Zunlong ◽  
Liu Yonghao ◽  
Dong Rui ◽  
Wang Dingbiao ◽  
Chen Xiaotang

Abstract A numerical study of the gas–liquid two-phase flow and mass transfer in a square microchannel with a T-junction is carried out in this work. Through numerical simulation methods, the flow patterns of bubble flow, slug flow and annular flow are determined. By proposing a new flow pattern conversion relationship with different media and different speeds, 100 sets of CO2-water flow patterns and 100 sets of CO2-ethanol flow patterns are obtained. The effects of surface tension on flow pattern, bubble length and liquid plug length are studied. The pressure distribution and pressure drop are analyzed, and mass transfer is obtained through slug flow simulation, and the influencing factors of gas–liquid mass transfer are studied. The results show that the effect of surface tension on the length of the bubble and the length of the liquid plug is completely opposite, the pressure distribution is stepped, and the pressure drop increases with the increase of the gas–liquid velocity. In addition, it was found that the volumetric mass transfer coefficients of the bubble cap and the liquid film gradually decreased with time, and eventually stabilized. The increase in bubble velocity accelerates the mass transfer rate, while the increase in unit cell length slows the mass transfer rate. However, the influence of film thickness and liquid film length on mass transfer varies with time.

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 226
Author(s):  
Rashal Abed ◽  
Mohamed M. Hussein ◽  
Wael H. Ahmed ◽  
Sherif Abdou

Airlift pumps can be used in the aquaculture industry to provide aeration while concurrently moving water utilizing the dynamics of two-phase flow in the pump riser. The oxygen mass transfer that occurs from the injected compressed air to the water in the aquaculture systems can be experimentally investigated to determine the pump aeration capabilities. The objective of this study is to evaluate the effects of various airflow rates as well as the injection methods on the oxygen transfer rate within a dual injector airlift pump system. Experiments were conducted using an airlift pump connected to a vertical pump riser within a recirculating system. Both two-phase flow patterns and the void fraction measurements were used to evaluate the dissolved oxygen mass transfer mechanism through the airlift pump. A dissolved oxygen (DO) sensor was used to determine the DO levels within the airlift pumping system at different operating conditions required by the pump. Flow visualization imaging and particle image velocimetry (PIV) measurements were performed in order to better understand the effects of the two-phase flow patterns on the aeration performance. It was found that the radial injection method reached the saturation point faster at lower airflow rates, whereas the axial method performed better as the airflow rates were increased. The standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) were calculated and were found to strongly depend on the injection method as well as the two-phase flow patterns in the pump riser.


2006 ◽  
Vol 49 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Tomio OKAWA ◽  
Naoya SHIMADA ◽  
Akio KOTANI ◽  
Isao KATAOKA

Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow patterns of adiabatic gas-liquid two-phase flow in micro-channels were experimentally investigated. Using nitrogen and water, experiments were conducted in square micro-channels with hydraulic diameters of 0.209mm, 0.412mm and 0.622 mm, respectively. Gas and liquid superficial velocities were varied from 0.06–72.3 m/s and 0.02–7.13 m/s, respectively. Four defined flow patterns, bubbly-slug flow, slug-ring flow, dispersed-churn flow and annular flow, were observed in micro-channels of 0.412 mm and, 0.622 mm. In the micro-channel of 0.209 mm, the bubbly-slug flow became the slug-flow and the dispersed-churn flow disappeared due to the surface tension effect and the smooth gas-liquid interface. The flow regime maps for the current three micro-channels were constructed and showed the transition lines shifted to higher gas superficial velocity due to the stronger surface tension effect with a smaller channel size in micro-channels. They were also compared with some other micro-channel flow regime maps and the mini-channel flow regime map based on the Weber number model, which showed the flow map for the micro-channel is significantly sensitive to the working fluid, channel geometry and channel size and the flow regime criteria developed for mini-channels should not be applied for micro-channels without further verification.


Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.


Author(s):  
Desheng Zhang ◽  
Weidong Shi ◽  
Dazhi Pan ◽  
Guangjian Zhang

Purpose – The purpose of this paper is to predict the unstable cavitation shedding flow around a 2D Clark-y hydrofoil. Design/methodology/approach – The paper studies Partially Averaged Navier-Stokes (PANS) model which was employed in the two-phase flow with a homogeneous cavitation model. Findings – Maximum density ratio affects the mass transfer rate between the liquid and the vapor significantly. The cavitating flow predicted by PANS model can resolve more turbulent scales by decreasing the parameter fk. Originality/value – The accuracy of numerical prediction is improved by increasing the maximum density ratio and decreasing fk.


Author(s):  
Bai Bofeng ◽  
Liu Maolong ◽  
Su Wang ◽  
Zhang Xiaojie

An experimental study was conducted on the air-water two-phase flow patterns in the bed of rectangular cross sections containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occurred within the experimental parameter ranges, namely, bubbly flow, bubbly-slug flow, slug flow, slug-annular flow, and annular flow. A correlation for the bubble and slug diameter in the packed beds was proposed, which was an extended expression of the Tung/Dhir model, Jamialahmadi’s model, and Schmidt’s model. Three correlations were proposed to calculate the void friction of the flow pattern transition in bubble flow, slug flow, and annular flow based on the bubble model in the pore region. The experimental result showed that the modified Tung and Dhir model of the flow pattern transition was in better agreement with the experimental data compared with Tung and Dhir’s model.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Dibakar Rakshit ◽  
K. P. Thiagarajan ◽  
R. Narayanaswamy

An exploratory study of two-phase physics was undertaken in a slow moving tank containing liquid. This study is under the regime of conjugate heat and mass transfer phenomena. An experiment was designed and performed to estimate the interfacial mass transfer characteristics of a slowly moving tank. The tank was swayed at varying frequencies and constant amplitude. The experiments were conducted for a range of liquid temperatures and filling levels. The experimental setup consisted of a tank partially filled with water at different temperatures, being swayed using a six degrees-of-freedom (DOF) motion actuator. The experiments were conducted for a frequency range of 0.7–1.6 Hz with constant amplitude of 0.025 m. The evaporation of liquid from the interface and the gaseous condensation was quantified by calculating the instantaneous interfacial mass transfer rate of the slow moving tank. The dependence of interfacial mass transfer rate on the liquid–vapor interfacial temperature, the fractional concentration of the evaporating liquid, the surface area of the liquid vapor interface and the filling level of the liquid was established. As sway frequency, filling levels, and liquid temperature increased, the interfacial mass transfer rate also increased. The interfacial mass transfer rate estimated for the swaying tank compared with the interfacial mass transfer rate of stationary tank shows that vibration increases the mass transfer.


Sign in / Sign up

Export Citation Format

Share Document