Non-similar solutions for mixed convection along a wedge embedded in a porous medium saturated by a non-Newtonian nanofluid

Author(s):  
Ali J. Chamkha ◽  
M. Rashad ◽  
Rama Subba Reddy Gorla

Purpose – The purpose of this paper is to present a boundary layer analysis for the mixed convection past a vertical wedge in a porous medium saturated with a power law type non-Newtonian nanofluid. Numerical results for friction factor, surface heat transfer rate and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le and the power law exponent n. The dependency of the friction factor, surface heat transfer rate (Nusselt number) and mass transfer rate on these parameters has been discussed. Design/methodology/approach – This general non-linear problem cannot be solved in closed form and, therefore, a numerical solution is necessary to describe the physics of the problem. An implicit, tri-diagonal finite-difference method has proven to be adequate and sufficiently accurate for the solution of this kind of problems. Therefore, it is adopted in the present study. Variable step sizes were used. The convergence criterion employed in this study is based on the difference between the current and the previous iterations. When this difference reached 10−5 for all the points in the η directions, the solution was assumed to be converged, and the iteration process was terminated. Findings – The results indicate that as the buoyancy ratio parameter (Nr) and thermophoresis parameter (Nt) increase, the friction factor increases whereas the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As the Brownian motion parameter (Nb) increases, the friction factor and surface mass transfer rates increase whereas the surface heat transfer rate decreases. As Le increases, mass transfer rates increase. As the power law exponent n increases, the heat and mass transfer rates increase. Research limitations/implications – The analysis is valid for natural convection dominated regime. The combined forced and natural convection dominated regimes will be reported in a future work. Practical implications – The approach used is useful in optimizing the porous media heat transfer problems in geothermal energy recovery, crude oil extraction, ground water pollution, thermal energy storage and flow through filtering media. Originality/value – The results of the study may be of some interest to the researchers of the field of porous media heat transfer. Porous foam and microchannel heat sinks used for electronic cooling are optimized utilizing the porous medium. The utilization of nanofluids for cooling of microchannel heat sinks requires understanding of fundamentals of nanofluid convection in porous media.

Author(s):  
Rama Subba Reddy Gorla ◽  
Waqar Khan

In this paper, a boundary layer analysis is presented for the natural convection past a vertical cylinder in a porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate on these parameters has been discussed. The results indicate that as Nr, Nb, and Nt increase, the friction factor and heat transfer rate (Nusselt number) decrease. The mass transfer rate (Sherwood number) increases with Le, Nb, and Nt.


Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Shashikant A. ◽  
Ebrahim Momoniat

Purpose This study aims to investigate the unsteady magnetohydrodynamic mixed convective nanofluid flow by using Buongiorno two-phase model to achieve an appropriate mechanism to improve the efficiency of solar energy systems by mitigating the energy losses. Design/methodology/approach The transport phenomena occurring in this physical problem are modelled using nonlinear partial differential equations and are non-dimensionalised by using non-similar transformations. The quasilinearisation technique is used to solve the resulting system with the help of a finite difference scheme. Findings The study reveals that the effect of the applied transverse magnetic parameter is to increase the temperature profile and to reduce the wall heat transfer rate. The Brownian diffusion and thermophoresis parameters that characterise the nanofluids contribute to the reduction in wall heat transfer rate. The presence of nanoparticles in the fluid gives rise to critical values for the thermophoresis parameter describing the behaviour of the wall heat and mass transfer rates. Wall heating and cooling are analysed by considering the percentage increase or percentage decrease in the heat and mass transfer rates in the presence of nanoparticles in the fluid. Research limitations/implications The investigation on wall cooling/heating leads to the analysis of control parameters applicable to the industrial design of thermal systems for energy storage, energy harvesting and cooling applications. Practical implications The analysis of the control parameters is of practical value to the solar industry. Social implications In countries, such as South Africa, daily power cuts are a reality. Any research into improving the quality of energy obtained from alternate sources is a national necessity. Originality/value From the literature survey in the present study, it is found that no similar work has been reported in the open literature that analyses the time-dependent mixed convection flow along the exponentially stretching surface in the presence of the effects of a magnetic field, nanoparticles and non-similar solutions.


2020 ◽  
Vol 11 (2) ◽  
pp. 8854-8874

An unsteady two-dimensional boundary layer slip flow of a viscous incompressible fluid moving plate in a quiescent fluid (Sakiadis flow) and the flow-induced over a stationary flat plate by a uniform free stream (Blasius flow) are investigated simultaneously, from a numerical point of view. The variable thermal conductivity, viscosity ratio parameter, and nonlinear chemical reaction are used in the governing equations. Similarity equations of the governing transport equations are converted into an ordinary differential equation. The transformed equations are solved numerically using the Runge-Kutta method via the shooting technique. Sample results for the dimensionless velocity, temperature, and concentration distributions are studied through graphically. Moreover, friction factor, heat, and mass transfer rates have been discussed in detail. The chemical reaction parameter decelerates the friction factor and heat transfer rates for the Sakiadis and Blasius flow cases and enhances in mass transfer rate in both cases. The rate of mass transfer is higher in Blasius flow compared with Sakiadis flow. The present results of the heat transfer rate are compared with the published results are found to be in good agreement.


2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Dewanto Harjunowibowo ◽  
Dina Nur Adilah ◽  
Dwi Teguh Rahardjo ◽  
Danar S. Wijayanto ◽  
Fredy Surahmanto ◽  
...  

The density of adsorbent bed significantly contributed to solar cooling performance (COP). The density determines how well the heat and mass transfer are. Besides that, the COP is also determined by ambient temperature. This research aims to investigate the affect of temperature of a connecting pipe, as a representative of different ambient temperature against a solar cooling machine performance. The experiment will show in what condition a solar cooling is going to have a better cooling result. The data used in this case was taken experimentally and conducted using a solar cooling machine equipped with temperature measurement units such as thermocouple logger. For cold ambient temperature, in adsorption process, refrigerant vapour flows to the generator through the connecting pipe cooled by water and kept steady. The results show that the COP, heat and mass transfer of adsorbent bed of the system in the adsorption process on a warm condition are better than in a cold environment. In the warm condition the COP system is 0.24, the heat transfer rate is 0.06 °C/minute, and the mass transfer rate is 1.09 ml/minute. Whereas, in the cold condition the COP system is 0.23, the heat transfer rate is 0.05 °C/minute, and the mass transfer rate is 1.04 ml/minute. 


1986 ◽  
Vol 108 (1) ◽  
pp. 153-160 ◽  
Author(s):  
J. E. Doorly ◽  
M. L. G. Oldfield

The paper describes a technique which enables measurements of the surface heat transfer rate to be made using thin-film gages deposited on a vitreous enamel-coated metal model. It is intended that this will have particular application in rotating turbine test rigs, where it offers considerable advantages over present techniques. These include ease of manufacture, instrumentation, durability, and lack of interference with the basic flow. The procedures for gage calibration and measurement processing are outlined, and the results of wind tunnel tests which confirm that the method is both practical and accurate are described.


Author(s):  
Lei Luo ◽  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Ake Sunden ◽  
Sangtao Wang

Purpose The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop penalty. The purpose of this paper is to study the effect of dimple depth and dimple diameter on the target surface heat transfer and the inlet to outlet friction factor. Design/methodology/approach The study is carried out by using the numerical simulations. The impingement flow is directly impinging on the dimple and released from the film holes after passing the double wall chamber. The ratio between dimple depth and dimple diameter is varied from 0 to 0.4 and the ratio between dimple diameter and impingement hole diameter is ranging from 0.5 to 3. The Reynolds number is between 10,000 and 70,000. Results of the target surface Nusselt number, friction factor and flow structures are included. For convenience of comparison, the double wall cooling structure without the dimple is considered as the baseline. Findings It is found that the dimple can effectively enhance the target surface heat transfer due to thinning of the flow boundary layer and flow reattachment as well as flow recirculation outside the dimple near the dimple rim especially for the large Re number condition. However, the stagnation point heat transfer is reduced. It is also found that for a large dimple depth or large dimple diameter, a salient heat transfer reduction occurs for the toroidal vortex. The thermal performance indicates that the intensity of the heat transfer enhancement depends upon the dimple depth and dimple diameter Originality/value This is the first time to adopt a dimple into a double wall cooling structure. It suggests that the target surface heat transfer in a double wall cooling structure can be increased by the use of the dimple. However, the heat transfer characteristic is sensitive for the different dimple diameter and dimple depth which may result in a different flow behavior


Author(s):  
John D. Wallace ◽  
Mark R. D. Davies

This paper demonstrates a method of calculating the entropy generation rate in an incompressible laminar turbine blade boundary-layer from measurements of surface heat transfer rate. It is shown that the entropy generated by fluid friction in an incompressible blade boundary-layer is significantly less than that generated by heat transfer at engine representative temperature ratios. The centre blade in a low-speed linear cascade is electrically heated and isolated from the airflow with a bypass valve. Upon opening the valve the blade is transiently cooled and thin film heat transfer gauges, painted on machinable glass ceramic inserts mounted into the surface of the blade, are used to record blade surface temperature and surface heat transfer rate signals; local Nusselt numbers are then calculated. Non-dimensional temperature distributions are derived across the boundary-layer using the blade surface heat transfer rate and a similarity condition. The equation describing the local entropy generation per unit volume is then integrated through the boundary-layer at each chordwise measurement point on the blade surface.


2012 ◽  
Vol 189 ◽  
pp. 189-192 ◽  
Author(s):  
Ding Guo Zhao ◽  
Shu Huan Wang ◽  
Qiu Jing Li

Analyzed the melting process of iron base which contacted tightly with boron slag, established the boriding melting dynamical model of iron base and calculated the melting rate of pure iron. The melting rate of pure iron is not only decided by heat transfer rate, but also related to the mass transfer rate of boron. With the resolving of the model, we can know that the melting rate of pure iron is 3.41mm/min, and melting time is 15 min. When the speed of heating is high, the melting rate is mainly decided by diffusion.


1989 ◽  
Vol 111 (2) ◽  
pp. 105-115 ◽  
Author(s):  
A. B. Johnson ◽  
M. J. Rigby ◽  
M. L. G. Oldfield ◽  
R. W. Ainsworth ◽  
M. J. Oliver

A theoretical model to explain observed rapid large-scale surface heat transfer rate fluctuations associated with the impingement of nozzle guide vane trailing edge shock waves on a transonic turbine rotor blade is described. Experiments were carried out in the Oxford Isentropic Light Piston Cascade Tunnel using an upstream rotating bar system to simulate the shock wave passing. High-frequency surface heat transfer and pressure measurements gave rapidly varying, large, transient signals, which schlieren photography showed to be associated with the impingement of passing shock waves on the surface. Heat transfer rates varying from three times the mean value to negative quantities were measured. A simple first-order perturbation analysis of the boundary layer equations shows that the transient adiabatic heating and cooling of the boundary layer by passing shock waves and rarefactions can give rise to high-temperature gradients near the surface. This in turn leads to large conductive heat transfer rate fluctuations. The application of this theory to measured fluctuating pressure signals gave predictions of fluctuating heat transfer rates that are in good agreement with those measured. It is felt that the underlying physical mechanisms for shock-induced heat transfer fluctuations have been identified. Further work will be necessary to confirm them in rotating experiments.


Sign in / Sign up

Export Citation Format

Share Document