Effect of Boron on the Melting Dynamics of Iron Base

2012 ◽  
Vol 189 ◽  
pp. 189-192 ◽  
Author(s):  
Ding Guo Zhao ◽  
Shu Huan Wang ◽  
Qiu Jing Li

Analyzed the melting process of iron base which contacted tightly with boron slag, established the boriding melting dynamical model of iron base and calculated the melting rate of pure iron. The melting rate of pure iron is not only decided by heat transfer rate, but also related to the mass transfer rate of boron. With the resolving of the model, we can know that the melting rate of pure iron is 3.41mm/min, and melting time is 15 min. When the speed of heating is high, the melting rate is mainly decided by diffusion.

2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Dewanto Harjunowibowo ◽  
Dina Nur Adilah ◽  
Dwi Teguh Rahardjo ◽  
Danar S. Wijayanto ◽  
Fredy Surahmanto ◽  
...  

The density of adsorbent bed significantly contributed to solar cooling performance (COP). The density determines how well the heat and mass transfer are. Besides that, the COP is also determined by ambient temperature. This research aims to investigate the affect of temperature of a connecting pipe, as a representative of different ambient temperature against a solar cooling machine performance. The experiment will show in what condition a solar cooling is going to have a better cooling result. The data used in this case was taken experimentally and conducted using a solar cooling machine equipped with temperature measurement units such as thermocouple logger. For cold ambient temperature, in adsorption process, refrigerant vapour flows to the generator through the connecting pipe cooled by water and kept steady. The results show that the COP, heat and mass transfer of adsorbent bed of the system in the adsorption process on a warm condition are better than in a cold environment. In the warm condition the COP system is 0.24, the heat transfer rate is 0.06 °C/minute, and the mass transfer rate is 1.09 ml/minute. Whereas, in the cold condition the COP system is 0.23, the heat transfer rate is 0.05 °C/minute, and the mass transfer rate is 1.04 ml/minute. 


Author(s):  
Ruben Avila ◽  
Eduardo Ramos

We study the heat transfer rate in an oscillatory, two dimensional solid-liquid system which is melted from below. As the phase change process takes place, the height of the fluid layer in the lower part of the cavity is continuously enlarged. The influence of the angular frequency of the motion (Taylor number) and the melting rate (Stefan number) on: (i) the heat transfer in the liquid (Nusselt number), (ii) the temperature field and (iii) the shape of the interface, is analyzed. The governing equations together with the Stefan condition at the interface are solved by using a spectral element method. It is observed that as the height of the liquid layer increases, a non-steady unicellular flow appears, and it leads to an oscillatory behaviour of the Nusselt number. As the height of the liquid layer increases further, the onset of the thermal convection and its instabilities modify the shape of the interface, and the heat transfer rate in the molten material. We find that (i) for large Stefan numbers, the heat is transported mostly along the inclined walls, while for low Stefan numbers, a Rayleigh-Bénard type convection is dominant, and (ii) for large Taylor numbers, the motion induced by the oscillation is small, resulting in a Nusselt number that decreases monotonously as a function of time, in contrast, for small Taylor numbers, an oscillatory Nusselt number is displayed.


Author(s):  
Ali J. Chamkha ◽  
M. Rashad ◽  
Rama Subba Reddy Gorla

Purpose – The purpose of this paper is to present a boundary layer analysis for the mixed convection past a vertical wedge in a porous medium saturated with a power law type non-Newtonian nanofluid. Numerical results for friction factor, surface heat transfer rate and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le and the power law exponent n. The dependency of the friction factor, surface heat transfer rate (Nusselt number) and mass transfer rate on these parameters has been discussed. Design/methodology/approach – This general non-linear problem cannot be solved in closed form and, therefore, a numerical solution is necessary to describe the physics of the problem. An implicit, tri-diagonal finite-difference method has proven to be adequate and sufficiently accurate for the solution of this kind of problems. Therefore, it is adopted in the present study. Variable step sizes were used. The convergence criterion employed in this study is based on the difference between the current and the previous iterations. When this difference reached 10−5 for all the points in the η directions, the solution was assumed to be converged, and the iteration process was terminated. Findings – The results indicate that as the buoyancy ratio parameter (Nr) and thermophoresis parameter (Nt) increase, the friction factor increases whereas the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As the Brownian motion parameter (Nb) increases, the friction factor and surface mass transfer rates increase whereas the surface heat transfer rate decreases. As Le increases, mass transfer rates increase. As the power law exponent n increases, the heat and mass transfer rates increase. Research limitations/implications – The analysis is valid for natural convection dominated regime. The combined forced and natural convection dominated regimes will be reported in a future work. Practical implications – The approach used is useful in optimizing the porous media heat transfer problems in geothermal energy recovery, crude oil extraction, ground water pollution, thermal energy storage and flow through filtering media. Originality/value – The results of the study may be of some interest to the researchers of the field of porous media heat transfer. Porous foam and microchannel heat sinks used for electronic cooling are optimized utilizing the porous medium. The utilization of nanofluids for cooling of microchannel heat sinks requires understanding of fundamentals of nanofluid convection in porous media.


Author(s):  
Rama Subba Reddy Gorla ◽  
Waqar Khan

In this paper, a boundary layer analysis is presented for the natural convection past a vertical cylinder in a porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate on these parameters has been discussed. The results indicate that as Nr, Nb, and Nt increase, the friction factor and heat transfer rate (Nusselt number) decrease. The mass transfer rate (Sherwood number) increases with Le, Nb, and Nt.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wen Fu ◽  
Li Zhang ◽  
Xiaowei Li ◽  
Xinxin Wu

The heat and mass transfer processes of natural convective condensation with noncondensable gases are very important for the passive containment cooling system of water cooled reactors. Numerical simulation of natural convective condensation with noncondensable gases was realized in the Fluent software by adding condensation models. The scaled AP600 containment condensation experiment was simulated to verify the numerical method. It was shown that the developed method can predict natural convective condensation with noncondensable gases well. The velocity, species, and density fields in the scaled AP600 containment were presented. The heat transfer rate distribution and the influences of the mass fraction of air on heat transfer rate were also analyzed. It is found that the driving force of natural convective condensation with noncondensable gases is mainly caused by the mass fraction difference but not temperature difference. The natural convective condensation with noncondensable gases in AP1000 containment was then simulated. The temperature, species, velocity, and heat flux distributions were obtained and analyzed. The upper head of the containment contributes to 35.1% of the total heat transfer rate, while its area only takes 25.4% of the total condensation area of the containment. The influences of the mass fraction of low molecular weight noncondensable gas (hydrogen) on the natural convective condensation were also discussed based on the detailed species, density, and velocity fields. The results show that addition of hydrogen (production of zirconium-water reaction after severe accident) will weaken the intensity of natural convection and the heat and mass transfer processes significantly. When hydrogen contributes to 50% mole fraction of the noncondensable gases, the heat transfer coefficient will be reduced to 45%.


1998 ◽  
Vol 4 (2) ◽  
pp. 113-128 ◽  
Author(s):  
R. J. Goldstein ◽  
S. B. Chen

The mass transfer (analogous to heat transfer) and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF) and two stepped-diameter circular fins (SDCF1 and SDCF2). Flow visualization using oil-lampblack reveals complex flow characteristics associated with the repeated production of horseshoe vortices and fin wakes, and the interactions among these. The SDCF1 and SDCF2 arrays show flow characteristics different from the UDCF array due to downflow from the steps. For all arrays tested, the near-endwall flow varies row by row in the initial rows until it reaches a stable pattern after the third row. The row-averaged Sherwood numbers obtained from the naphthalene sublimation experiment also show a row-by-row variation pattern similar to the flow results. While the SDCF2 array has the highest mass transfer rate, the SDCF1 array has the smallest pressure loss at the same approach-flow velocity. The fin surfaces have higher array-averaged Sherwood number than the endwall and the ratio between these changes with fin shape and Reynolds number. The performance of the pin-fin arrays is analyzed under two different constraints: the mass[heat transfer rate at fixed pumping power, and the mass/heat transfer area and pressure loss to fulfill fixed heat load at a fixed mass flow rate. In both cases, the SDCF2 array shows the best performance.


1973 ◽  
Vol 95 (3) ◽  
pp. 352-356 ◽  
Author(s):  
J. C. F. Chow ◽  
K. Soda

Analytical solutions are obtained on the effects of boundary constriction on heat or mass transfer at the entrance region in a well-developed steady laminar flow in symmetric and axisymmetric conduits subjected to uniform wall temperature or mass concentration. The solutions are limited to the fluids of constant properties with negligible viscous dissipation, moderate Reynolds number, and large Peclet or Schmidt number, and the spread of the wall constriction is large compared to the mean width or radius of the conduits. It is found that both the bulk temperature and heat transfer rate at the wall are oscillatory in nature, and their amplitudes decrease drastically as the fluid moves away from the entrance. Near thermal entry length, the bulk fluid temperature approaches its mean value with vanishing oscillation, but the heat transfer rate at the wall stays oscillatory in nature due to the irregularity of the wall. The thermal entry length changes very little from the corresponding straight-wall conduits. These results are also true for the mass transfer.


1991 ◽  
Vol 113 (4) ◽  
pp. 874-882 ◽  
Author(s):  
Y.-X. Tao ◽  
M. Kaviany

Simultaneous heat and mass transfer from partially liquid-covered surfaces is examined experimentally using a surface made of cylinders with the voids filled with liquid. The steady-state evaporation rate, surface temperature of the liquid and exposed solid, and location of meniscus are measured for various ambient air velocities and temperatures. Using these, we examine the effect of the extent to which the liquid covers the surface on the evaporation mass transfer rate resulting from the convective heat transfer from the ambient gas to this surface. The results show strong Bond and Reynolds number effects. For small Bond and Reynolds numbers, the presence of dry (exposed solid) surface does not influence the mass transfer rate. As the Bond or Reynolds number increases, a critical liquid coverage is found below which the mass transfer begins to decrease. Heat transfer from the exposed solid to the liquid is also examined using the measured surface temperature, a conduction model, and an estimate of the liquid and solid surface areas (using a static formation for the liquid meniscus). The results show that at the liquid surface an analogy between heat and mass transfer does not exist.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Lokesh Kalapala ◽  
Jaya Krishna Devanuri

Abstract One of the challenges in the design and development of a latent heat storage unit (LHSU) is to increase the charging and discharging rates which are inherently low because of low thermal conductivity of phase change materials (PCM). Out of various heat transfer enhancement techniques, employing annular fins is very simple, efficient and no fabrication complexity is involved. Fin parameters (fin size and number of fins) significantly influence the enhancement in heat transfer rate. Hence, optimization of fin parameters is necessary for the efficient design of an LHSU. While designing an LHSU along with heat transfer rate, entropy generation should also be considered in order to make it exergetically efficient. Therefore, the present study is aimed at multi-objective optimization of annular fin parameters to minimize the melting time and entropy generation. Fin diameter and the number of fins are taken as the variables. The influence of these two variables on the melting time, average Nusselt number, energy stored, and distribution of entropy is presented. The melting rate is increased, and global entropy generation decreased by increasing the number of fins up to 15. An increase in the fin diameter reduced the melting time while entropy generation got increased. For the multi-objective optimization, the multi-objective optimization based on ratio analysis (MOORA) technique is chosen and the optimized values of fin diameter and number of fins are observed to be 80 mm and 15 respectively. Finally, optimized parameters are represented in non-dimensional form to make them applicable for any size of the LHSU.


1998 ◽  
Vol 120 (4) ◽  
pp. 299-304 ◽  
Author(s):  
L. Rosario ◽  
M. M. Rahman

The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing the heat transfer rate with and without fins under the same operating conditions. Calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. An analysis of the overall efficiency for the assembly was also done. Results were compared to those under dry conditions, wherever appropriate. Comparison between present results and those published for rectangular as well as radial fins under fully wet conditions were made. These comparisons established the validity of the present model. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature. The fin efficiency decreased with relative humidity.


Sign in / Sign up

Export Citation Format

Share Document