New Heat Transfer Gages for Use on Multilayered Substrates

1986 ◽  
Vol 108 (1) ◽  
pp. 153-160 ◽  
Author(s):  
J. E. Doorly ◽  
M. L. G. Oldfield

The paper describes a technique which enables measurements of the surface heat transfer rate to be made using thin-film gages deposited on a vitreous enamel-coated metal model. It is intended that this will have particular application in rotating turbine test rigs, where it offers considerable advantages over present techniques. These include ease of manufacture, instrumentation, durability, and lack of interference with the basic flow. The procedures for gage calibration and measurement processing are outlined, and the results of wind tunnel tests which confirm that the method is both practical and accurate are described.

1988 ◽  
Vol 110 (2) ◽  
pp. 242-250 ◽  
Author(s):  
J. E. Doorly

The paper describes how thin film surface heat flux gages may be used to measure surface heat transfer rate to enamel-coated metal turbine blades. Flexible methods, which are also computationally efficient, for obtaining the heat transfer rate are described. Experimental results, using the new coated metal turbine blades and processing techniques, in a stationary transient cascade facility are given, and are shown to agree well with results using the existing method for gages on single-layer substrate blades. The application of the gages for measuring highly unsteady heat transfer is also discussed.


Author(s):  
John D. Wallace ◽  
Mark R. D. Davies

This paper demonstrates a method of calculating the entropy generation rate in an incompressible laminar turbine blade boundary-layer from measurements of surface heat transfer rate. It is shown that the entropy generated by fluid friction in an incompressible blade boundary-layer is significantly less than that generated by heat transfer at engine representative temperature ratios. The centre blade in a low-speed linear cascade is electrically heated and isolated from the airflow with a bypass valve. Upon opening the valve the blade is transiently cooled and thin film heat transfer gauges, painted on machinable glass ceramic inserts mounted into the surface of the blade, are used to record blade surface temperature and surface heat transfer rate signals; local Nusselt numbers are then calculated. Non-dimensional temperature distributions are derived across the boundary-layer using the blade surface heat transfer rate and a similarity condition. The equation describing the local entropy generation per unit volume is then integrated through the boundary-layer at each chordwise measurement point on the blade surface.


Author(s):  
Ali J. Chamkha ◽  
M. Rashad ◽  
Rama Subba Reddy Gorla

Purpose – The purpose of this paper is to present a boundary layer analysis for the mixed convection past a vertical wedge in a porous medium saturated with a power law type non-Newtonian nanofluid. Numerical results for friction factor, surface heat transfer rate and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le and the power law exponent n. The dependency of the friction factor, surface heat transfer rate (Nusselt number) and mass transfer rate on these parameters has been discussed. Design/methodology/approach – This general non-linear problem cannot be solved in closed form and, therefore, a numerical solution is necessary to describe the physics of the problem. An implicit, tri-diagonal finite-difference method has proven to be adequate and sufficiently accurate for the solution of this kind of problems. Therefore, it is adopted in the present study. Variable step sizes were used. The convergence criterion employed in this study is based on the difference between the current and the previous iterations. When this difference reached 10−5 for all the points in the η directions, the solution was assumed to be converged, and the iteration process was terminated. Findings – The results indicate that as the buoyancy ratio parameter (Nr) and thermophoresis parameter (Nt) increase, the friction factor increases whereas the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As the Brownian motion parameter (Nb) increases, the friction factor and surface mass transfer rates increase whereas the surface heat transfer rate decreases. As Le increases, mass transfer rates increase. As the power law exponent n increases, the heat and mass transfer rates increase. Research limitations/implications – The analysis is valid for natural convection dominated regime. The combined forced and natural convection dominated regimes will be reported in a future work. Practical implications – The approach used is useful in optimizing the porous media heat transfer problems in geothermal energy recovery, crude oil extraction, ground water pollution, thermal energy storage and flow through filtering media. Originality/value – The results of the study may be of some interest to the researchers of the field of porous media heat transfer. Porous foam and microchannel heat sinks used for electronic cooling are optimized utilizing the porous medium. The utilization of nanofluids for cooling of microchannel heat sinks requires understanding of fundamentals of nanofluid convection in porous media.


Author(s):  
Roger W. Moss ◽  
Roger W. Ainsworth ◽  
Tom Garside

Measurements of turbine blade surface heat transfer in a transient rotor facility are compared with predictions and equivalent cascade data. The rotating measurements involved both forwards and reverse rotation (wake free) experiments. The use of thin-film gauges in the Oxford Rotor Facility provides both time-mean heat transfer levels and the unsteady time history. The time-mean level is not significantly affected by turbulence in the wake; this contrasts with the cascade response to freestream turbulence and simulated wake passing. Heat transfer predictions show the extent to which such phenomena are successfully modelled by a time-steady code. The accurate prediction of transition is seen to be crucial if useful predictions are to be obtained.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Chunji Yan ◽  
H. B. Ma

A mathematical model predicting heat transfer and film thickness in thin-film region is developed herein. Utilizing dimensionless analysis, analytical solutions have been obtained for heat flux distribution, total heat transfer rate per unit length, location of the maximum heat flux and ratio of conduction thermal resistance to convection thermal resistance in the evaporating film region. These analytical solutions show that the maximum dimensionless heat flux is constant which is independent of the superheat. Maximum total heat transfer rate is determined for a given film region. The ratio of conduction thermal resistance to convection thermal resistance is a function of dimensionless film thickness. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region.


Author(s):  
Terry Hendricks ◽  
Jaal Ghandhi ◽  
John Brossman

Heat flux measurements were performed in an air-cooled utility engine using a fast-response coaxial-type surface thermocouple. The surface heat flux was calculated using both analytical and numerical models. The heat flux was found to be a strong function of engine load. The peak heat flux and initial heat flux rise rate increase with engine load. The measured heat flux data were used to estimate a global heat transfer rate, and this was compared with the heat transfer rate calculated by a single-zone heat release analysis. The measured values of heat transfer were higher than the calculated values largely because of the lack of spatial averaging. The high load data showed an unexplainable negative heat flux during the expansion stroke while the gas temperature was still high. A 1D and 2D finite difference numerical model utilizing an adaptive timestep Crank-Nicholson (CN) integration routine was developed to investigate the surface temperature measurement. Applying the measured surface temperature profile to the 1D model, the resultant surface heat flux showed excellent agreement with the analytical inversion solution and captured the reversal of the energy flow back into the cylinder during the expansion stroke. The 2D numerical model was developed to observe transient lateral conduction effects within the probe and incorporated the various materials used in the construction and assembly of the heat flux sensor. The resulting average heat flux profile for the test case is shown to be slightly higher in peak and longer in duration when compared with the results from the 1D analytical inversion, and this is attributed to contributions from the high thermal diffusivity constituents in the sensor. Furthermore, the negative heat flux at high load was not eliminated suggesting that factors other than lateral conduction may be affecting the measurement accuracy.


Author(s):  
Edwin Igiede ◽  
Patrick F. Mensah ◽  
Stephen Akwaboa

High Temperature exposure and the corresponding thermo-mechanical behavior of cylindrical polymer composite pipe using CFD simulation has been investigated in this study. The software FLUENT was employed for the analysis of heat transfer, by coupling equations of energy and motion. Analysis was done based on applied external boundary temperature profile, change in internal energy, the total surface heat flux and surface heat transfer rate in order to evaluate the extent of thermal damage. FLUENT compatible program written in C++ language in the form of user define functions (UDF) has been developed and used to specify the time dependent heat flux generated temperature as well as temperature dependent thermal properties of density, thermal conductivity and specific heat. Available furnace test experimental data from (ASTM 1173-95) database were used as outer surface boundary condition in the model setup by developing it into UDF correlation equations. The outputs of the FLUENT simulations are predictions of transient temperature distribution through the thickness of the pipe wall that were then used in evaluating the thermal stresses of the composite pipe. Validation of the simulation results is done with existing data available in the literature. Using the wall generated temperatures, internal energy, the rate of change of the temperature dependent properties and the heat transfer rate, the thermal endurance of each of the coatings materials has been predicted in this work. At the same time knowledge of the thermal performance of these materials is essential for the optimum design of protection based on the composite application.


2018 ◽  
Vol 54 (10) ◽  
pp. 3047-3057 ◽  
Author(s):  
Afshin Ahmadi Nadooshan ◽  
Rasool Kalbasi ◽  
Masoud Afrand

Author(s):  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

Structured (in particular, micro- and minigrooved) wall surfaces may improve numerous industrial processes, including falling film evaporation, thin film evaporation in lean premixed prevaporized combustion technology (LPP), and spray and jet cooling. The advantages of such surfaces include the promotion of ultra-thin film evaporation at the apparent contact lines and the prevention of dry patches on hot surfaces. However, the behavior of thin film flow on structured surfaces has not yet been comprehensively studied. We derive a model describing the heat transfer in liquid film flowing down inclined micro- or minigrooved walls. The derived model accounts for peculiarities of the evaporation process in the vicinity of the liquid-vapor-solid contact line (“micro region”) and their effect on the overall heat transfer rate. It is shown that the effect of the micro region is to increase the overall heat transfer rate at the constant fluid flow rate. A long-wave stability analysis has been performed to quantify the effect of the capillary structure on the film stability properties. Sinusoidal and triangular longitudinal groove shapes have been considered. Two cases have been studied: (i) the film completely covers the wall structure; (ii) the film partly covers the wall structure. It is shown that the longitudinal grooves completely covered by the liquid have a stabilizing effect on the falling film flow. The performed analysis is a step towards modeling the wavy motion of the liquid film on grooved surfaces.


Sign in / Sign up

Export Citation Format

Share Document