Heat generating/absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium

Author(s):  
Mythili Durairaj ◽  
Sivaraj Ramachandran ◽  
Rashidi Mohammad Mehdi

Purpose The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium in the presence of cross-diffusion effects. Design/methodology/approach A numerical computation for the governing equations has been performed using implicit finite difference method of Crank–Nicolson type. Findings The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically, and the physical aspects are discussed in detail. Numerical results for average skin-friction, Nusselt number and Sherwood number are tabulated for the pertaining physical parameters. Results indicate that Soret and Dufour effects have notable influence on heat and mass transfer characteristics of the fluid when the temperature and concentration gradients are high. It is also observed that the consideration of heat generation/absorption plays a vital role in predicting the heat transfer characteristics of moving fluids. Research limitations/implications Consider a two-dimensional, unsteady, free convective flow of an incompressible Casson fluid over a vertical cone and a flat plate saturated with non-Darcy porous medium. The fluid properties are assumed to be constant except for density variations in the buoyancy force term. The fluid flow is moderate and the permeability of the medium is assumed to be low, so that the Forchheimer flow model is applicable. Practical implications The flow of Casson fluids (such as drilling muds, clay coatings and other suspensions, certain oils and greases, polymer melts and many emulsions), in the presence of heat transfer, is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs. Social implications In the heat and mass transfer investigations, the Casson fluid model is found to be accurately applicable in many practical situations in the wings of polymer processing industries and biomechanics, etc.; some prominent examples are silicon suspensions, suspensions of bentonite in water and lithographic varnishes used for printing inks. Originality/value The motivation of the present study is to bring out the effects of heat source/sink, Soret and Dufour effects on chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium. The flow of Casson fluids (such as certain oils and greases, polymer melts and many emulsions) in the presence of heat transfer is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs. A numerical computation for the governing equations has been performed using implicit finite difference method of the Crank–Nicolson type.

Author(s):  
A. Jasmine Benazir ◽  
R. Sivaraj ◽  
Oluwole Daniel Makinde

The present study focuses the effects of double dispersion, non-uniform heat source/sink and higher order chemical reaction on unsteady, free convective, MHD Casson fluid flow over a vertical cone and flat plate saturated with porous medium. The extensively validated and unconditionally stable numerical solutions are obtained for the governing equations of two dimensional boundary layer flow by using the finite difference scheme of Crank-Nicolson type. The behavior of velocity, temperature and concentration distributions for various controlling parameters of this problem are graphically illustrated and discussed in detail. The average skin friction, Nusselt number and Sherwood number for sundry parameters are presented in tables. Results indicate that an increase in Casson fluid parameter is found to decelerate fluid flow by increasing the plastic dynamic viscosity whereas it enhances the shear stress in the flow regime. The temperature-dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that higher order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.


2015 ◽  
Vol 70 (8) ◽  
pp. 583-591
Author(s):  
Muhammad Nasir ◽  
Adnan Saeed Butt ◽  
Asif Ali

AbstractA mathematical model has been performed for momentum, temperature, and mass concentration of a time-dependent Casson fluid flow between a long vertical wavy wall and a parallel wavy wall subject to convective boundary conditions. Perturbation technique is used to convert the coupled partial differential equations for velocity, temperature, and mass concentration to systems of ordinary differential equations. Analytical results for these differential equations are computed. The effects of various physical parameters such as thermal conductivity, thermal Grashof number, solutal Grashof number, heat absorption parameter, and Biot number are analysed graphically.


2021 ◽  
Vol 408 ◽  
pp. 33-49
Author(s):  
Lazarus Rundora

This article analyses the thermal decomposition in an unsteady MHD mixed convection flow of a reactive, electrically conducting Casson fluid within a vertical channel filled with a saturated porous medium and the influence of the temperature dependent properties on the flow. The fluid is assumed to be incompressible with the viscosity coefficient varying exponentially with temperature. The flow is subjected to an externally applied uniform magnetic field. The exothermic chemical kinetics inherent in the flow system give rise to heat dissipation. A technique based on a semi-discretization finite difference scheme and the shooting method is applied to solve the dimensionless governing equations. The effects of the temperature dependent viscosity, the magnetic field and other important parameters on the velocity and temperature profiles, the wall shear stress and the wall heat transfer rate are presented graphically and discussed quantitatively and qualitatively. The fluid flow model revealed flow characteristics that have profound ramifications including the increased heat transfer enhancement attributes of the reactive temperature dependent viscosity Casson fluid flow.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
A. Jasmine Benazir ◽  
R. Sivaraj ◽  
M. M. Rashidi

The present study explores the influence of viscous dissipation, Joule heating, and double dispersion on unsteady, free convective magnetohydrodynamics (MHD) flow of an incompressible Casson fluid over a vertical cone and flat plate saturated with porous medium subject to variable viscosity and variable electrical conductivity. The governing coupled, nonlinear partial differential equations are solved by Crank–Nicolson method. The effects of various significant parameters on flow, heat, and mass transfer characteristics are displayed in the form of figures and tables. The results indicate that the presence of variable viscosity parameter meagerly accelerates the fluid flow. It is observed that heat transfer is enhanced for increasing the thermal dispersion parameter and Eckert number.


2017 ◽  
Vol 27 (10) ◽  
pp. 2318-2332 ◽  
Author(s):  
Ioan Pop ◽  
Mikhail Sheremet

Purpose The main purpose of this numerical work is to study free convection of Casson fluid in a square differentially heated cavity taking into account the effects of thermal radiation and viscous dissipation. Design/methodology/approach The cavity is heated from the left vertical wall and cooled from the right vertical wall while horizontal walls are insulated. The governing partial differential equations invoking Rosseland approximation for thermal radiation with corresponding boundary conditions have been solved by finite difference method of the second-order accuracy using dimensionless variables stream function, vorticity and temperature. The governing parameters are Rayleigh number (Ra = 105), Prandtl number (Pr = 0.1, 0.7, 7.0), Casson parameter (γ = 0.1-5.0), radiation parameter (Rd = 0-10), Eckert number (Ec = 0-1.0). Findings It is found that an increase in Casson parameter leads to the heat transfer enhancement and fluid flow intensification. While a growth of Eckert number illustrates the heat transfer suppression. Originality/value The originality of this work is to analyze for the first-time natural convective fluid flow and heat transfer of a Casson fluid within a differentially heated square cavity under the effects of thermal radiation and viscous dissipation. The results would benefit scientists and engineers to become familiar with the flow behavior of such non-Newtonian fluids, and the way to predict the properties of this flow for possibility of using this specific fluid in various engineering and industrial processes, such as chyme movement in intestine, blood flows, lubrication processes with grease and heavy oils, glass blowing, electronic chips, food stuff, slurries, etc.


2020 ◽  
Vol 30 (11) ◽  
pp. 4909-4932 ◽  
Author(s):  
Abdelraheem M. Aly

Purpose The purpose of this study is to simulate the natural convection of a heated square shape embedded in a circular enclosure filled with nanofluid using an incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach In the ISPH method, the evaluated pressure was stabilized by using a modified source term in solving the pressure Poisson equation. The divergence of the velocity was corrected, and the dummy particles were used to treat the rigid boundary. Dummy wall particles were initially settled in outer layers of the circular enclosure for preventing particle penetration and reducing the error of truncated kernel. The circular enclosure was partially filled with a porous medium near to the outer region. The single-phase model was used for the nanofluid, and the Brinkman–Forchheimer-extended Darcy model was used for the porous medium. Dummy wall particles were initially settled in outer layers of circular enclosure for preventing particle penetration and reducing error from the truncated kernel on the boundary. Findings The length of the inner square shape plays an important role in enhancing the heat transfer and reducing the fluid flow inside a circular enclosure. The porous layer represents a resistance force for the fluid flow and heat transfer, and, consequently, the velocity field and temperature distributions are reduced at the outer region of the circular cylinder. Then, the radius of the inner square shape, Darcy parameter and radius of the porous layer were considered the main factors for controlling the fluid flow and heat transfer inside a circular enclosure. The average Nusselt number decreases as the inner square length, radius of the porous layer and solid volume fraction increase. Originality/value The stabilized ISPH method is corrected for simulating the natural convection from an inner hot square inside a nanofluid-filled circular enclosure saturated with a partial layer of a porous medium.


2019 ◽  
Vol 30 (6) ◽  
pp. 3463-3480 ◽  
Author(s):  
Jafar Hasnain ◽  
Zaheer Abbas ◽  
Mariam Sheikh ◽  
Shaban Aly

Purpose This study aims to present an analysis on heat transfer attributes of fluid-particle interaction over a permeable elastic sheet. The fluid streaming on the sheet is Casson fluid (CF) with uniform distribution of dust particles. Design/methodology/approach The basic steady equations of the CF and dust phases are in the form of partial differential equations (PDEs) which are remodeled into ordinary ones with the aid of similarity transformations. In addition to analytical solution, numerical solution is obtained for the reduced coupled non-linear ordinary differential equations (ODEs) to validate the results. Findings The solution seems to be influenced by significant physical parameters such as CF parameter, magnetic parameter, suction parameter, fluid particle interaction parameter, Prandtl number, Eckert number and number density. The impact of these parameters on flow field and temperature for both fluid and dust phases is presented in the form of graphs and discussed in detail. The effect on skin friction coefficient and heat transfer rate is also presented in tabular form. It has been observed that an increase in the CF parameter curtails the fluid velocity as well as the particle velocity however enhances the heat transfer rate at the wall. Furthermore, comparison of the numerical and analytical solution is also made and found to be in excellent agreement. Originality/value Although the analysis of dusty fluid flow has been widely examined, however, the present study obtained both analytical and numerical results of power law temperature distribution in dusty Casson fluid under the influence of magnetic field which are new and original for such type of flow.


Sign in / Sign up

Export Citation Format

Share Document