Study on fluid flow and heat transfer in fluid channel filled with KKL model-based nanofluid during natural convection using FVM

2019 ◽  
Vol 29 (8) ◽  
pp. 2622-2641
Author(s):  
Yongsheng Rao ◽  
Zehui Shao ◽  
Alireza Rahimi ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

PurposeA comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is filled with CuO–water nanofluid.Design/methodology/approachThe Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider the Brownian motion. On the other hand, the influence of nanoparticles’ shapes on the heat transfer rate is considered in the simulations. The channel is included with the injection pipes which are modeled as active bodies with constant temperature in the 2D simulations.FindingsThe Rayleigh number, nanoparticle concentration and the thermal arrangements of internal pipes are the governing parameters. The hydrothermal aspects of natural convection are investigation using different approaches such as average Nusselt number, total entropy generation, Bejan number, streamlines, temperature fields, local heat transfer irreversibility, local fluid friction irreversibility and heatlines.Originality/valueThe originality of this work is investigation of fluid flow, heat transfer, entropy generation and heatline visualization within a nanofluid-filled channel using a finite volume method.


Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.



Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.



Author(s):  
Alireza Rahimi ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah ◽  
Mohammad Mehdi Rashidi ◽  
Abimanyu Purusothaman

Purpose This study aims to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with CuO-water nanofluid. Design/methodology/approach The lattice Boltzmann method is used to solve the problem numerically. Two different multiple relaxation time (MRT) models are used to solve the problem. The D3Q7–MRT model is used to solve the temperature field, and the D3Q19 is used to solve the fluid flow of natural convection within the enclosure. Findings The influences of different Rayleigh numbers (103 < Ra < 106) and solid volume fractions (0 < f < 0.04) on the fluid flow, heat transfer, total entropy generation, local heat transfer irreversibility and local fluid friction irreversibility are presented comprehensively. To predict thermo–physical properties, dynamic viscosity and thermal conductivity, of CuO–water nanofluid, the Koo–Kleinstreuer–Li (KKL) model is applied to consider the effect of Brownian motion on nanofluid properties. Originality/value The originality of this work is to analyze the three-dimensional natural convection and entropy generation using a new numerical approach of dual-MRT-based lattice Boltzmann method.



1987 ◽  
Vol 109 (1) ◽  
pp. 25-30 ◽  
Author(s):  
K. M. Kelkar ◽  
S. V. Patankar

Fluid flow and heat transfer in two-dimensional finned passages were analyzed for constant property laminar flow. The passage is formed by two parallel plates to which fins are attached in a staggered fashion. Both the plates are maintained at a constant temperature. Streamwise periodic variation of the cross-sectional area causes the flow and temperature fields to repeat periodically after a certain developing length. Computations were performed for different values of the Reynolds number, the Prandtl number, geometric parameters, and the fin-conductance parameter. The fins were found to cause the flow to deflect significantly and impinge upon the opposite wall so as to increase the heat transfer significantly. However, the associated increase in pressure drop was an order of magnitude higher than the increase in heat transfer. Streamline patterns and local heat transfer results are presented in addition to the overall results.



2019 ◽  
Vol 29 (12) ◽  
pp. 4746-4763 ◽  
Author(s):  
Qingang Xiong ◽  
Arash Khosravi ◽  
Narjes Nabipour ◽  
Mohammad Hossein Doranehgard ◽  
Aida Sabaghmoghadam ◽  
...  

Purpose This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus. Design/methodology/approach The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters. Findings The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented. Originality/value The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.



2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Amin Davari ◽  
Mehdi Maerefat

In the present study, analysis of fluid flow and heat transfer in the entrance and periodically fully developed regions of a channel with porous baffles is numerically studied. The Navier–Stokes and Brinkman–Forchheimer equations are used to model the fluid flow in the open and porous regions. The flow is assumed to be laminar. A finite-volume based method in conjunction with the SIMPLE algorithm is used to solve the equations. The local thermal equilibrium model is adopted in the energy equation to evaluate the solid and fluid temperatures. The effects of parameters such as baffle height, baffle spacing, Reynolds number, and thermal conductivity ratio between the porous baffles and the fluid on the flow field and local heat transfer rate are studied at relatively low and high values of Darcy number. Results show that local heat transfer coefficient significantly depends on the formation and variation of the recirculation caused by the porous baffles, such that, in the cases where use of porous baffles leads to recirculation zone, the local Nusselt number in the entrance region would be less than that of the fully developed region. It is also shown that heat transfer performance ratio is significantly improved for high Prandtl number fluids.



2011 ◽  
Vol 110-116 ◽  
pp. 1576-1581 ◽  
Author(s):  
Manish Kr. Khandelwal ◽  
P. Bera

A comprehensive numerical investigation on the natural convection in an isotropic porous enclosure is presented. All the walls of the enclosure are adiabatic except the bottom wall which is partially heated and cooled by sinusoidal temperature profile. The governing equations were written under assumption of Brinkman-extended non-Darcy model, including material derivative, and then solved by numerically using spectral element method (SEM). The heat transfer and fluid flow mechanisms in isotropic case are governed by periodicity parameter (N) Rayleigh Number (Ra), Darcy number (Da), aspect ratio (A), Prandtl number (Pr) and media permeability (K). The main emphasize is given on effect of N on local heat transfer as well as mechanism of heat transfer and fluid flow in enclosure. The results shows that, as the periodicity is decreased on increasing N the absolute value of Nux at the bottom left corner point increases. For odd values of N, the local heat transfer profile is symmetric about the line x=0.5, which is consequence of symmetric boundary condition at the bottom wall of the enclosure. The entire flow is governed by two type convective cells: (i) rotating clockwise (ii) rotating anticlockwise. Furthermore for even values of N cells rotating anticlockwise are dominated and covered the entire domain. In particular the present analysis shows that, different periodicity of temperature boundary condition has the significant effect on the flow mechanism and consequently on the heat transfer rate.



2020 ◽  
Vol 30 (11) ◽  
pp. 4909-4932 ◽  
Author(s):  
Abdelraheem M. Aly

Purpose The purpose of this study is to simulate the natural convection of a heated square shape embedded in a circular enclosure filled with nanofluid using an incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach In the ISPH method, the evaluated pressure was stabilized by using a modified source term in solving the pressure Poisson equation. The divergence of the velocity was corrected, and the dummy particles were used to treat the rigid boundary. Dummy wall particles were initially settled in outer layers of the circular enclosure for preventing particle penetration and reducing the error of truncated kernel. The circular enclosure was partially filled with a porous medium near to the outer region. The single-phase model was used for the nanofluid, and the Brinkman–Forchheimer-extended Darcy model was used for the porous medium. Dummy wall particles were initially settled in outer layers of circular enclosure for preventing particle penetration and reducing error from the truncated kernel on the boundary. Findings The length of the inner square shape plays an important role in enhancing the heat transfer and reducing the fluid flow inside a circular enclosure. The porous layer represents a resistance force for the fluid flow and heat transfer, and, consequently, the velocity field and temperature distributions are reduced at the outer region of the circular cylinder. Then, the radius of the inner square shape, Darcy parameter and radius of the porous layer were considered the main factors for controlling the fluid flow and heat transfer inside a circular enclosure. The average Nusselt number decreases as the inner square length, radius of the porous layer and solid volume fraction increase. Originality/value The stabilized ISPH method is corrected for simulating the natural convection from an inner hot square inside a nanofluid-filled circular enclosure saturated with a partial layer of a porous medium.



2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Kardgar

Purpose The purpose of this paper is to investigate conjugate heat transfer of natural convection and entropy generation of nanofluid in the presence of external magnetic field via numerical approach in an inclined square cavity enclosure. Design/methodology/approach Control volume finite volume method with collocated arrangement of grids was used for discretization of continuity, momentum, solid and fluid energy equations. Rhie and Chow interpolation technique was applied to avoid checkerboard problem in pressure field and the well-established SIMPLE algorithm was followed to deal with the pressure and velocity coupling. The cavity is filled with water and nanoparticles of the aluminum oxide (Al2O3). This study has been conducted for the certain pertinent parameters of the volume fraction of nanoparticle (φ = 0–0.08), the angle of inclination (ϴ = 0°–330°), the Ra number (Ra = 103–108), the solid to fluid conductivity ratio (ksf = 1–400), the Ha number (Ha = 0–80) and the wall thickness ratio (δ/L = 0–0.3). Findings The results indicate that averaged Nu number increases by approximately 9% by increasing volume fraction from 0.0 to 0.08. Nu increases with an increasing inclination angle to 40° and decreases abruptly in 90° because of the formation of two weaker vorticity with opposite circulation pattern intensifying the density of isotherm curves in a vertical direction. Nu increases sharply with increasing Ra more than 105. Nu also augments almost 67% by increasing ksf = 1 to ksf = 50 and remains constant by increasing ksf more than 50. Nu number reduction is almost 72% with a variation of wall thickness ratio from d/L = 0 to 0.3. Entropy generation because of fluid flow, magnetic field and heat transfer reduces linearly almost 30%, 19% and 16% by increasing volume fraction, respectively. With increasing ksf, entropy generation because of fluid flow, magnetic field and heat transfer increases asymptotically, but Bejan number decreases. Originality/value A brief review of conducted research studies in nanofluid flow and heat transfer reveals that the effect of wall thermal inertia was not investigated in MHD natural convection of nanofluids in an inclined enclosure. The aim of the present study is to analyze conjugate heat transfer in an inclined cavity filled with water and Al2O3.



Sign in / Sign up

Export Citation Format

Share Document