Implementation of a Web interface for hybrid intelligent systems

2019 ◽  
Vol 15 (4) ◽  
pp. 420-431 ◽  
Author(s):  
Shinji Sakamoto ◽  
Admir Barolli ◽  
Leonard Barolli ◽  
Shusuke Okamoto

PurposeThe purpose of this paper is to implement a Web interface for hybrid intelligent systems. Using the implemented Web interface, this paper evaluates two hybrid intelligent systems based on particle swarm optimization, hill climbing and distributed genetic algorithm to solve the node placement problem in wireless mesh networks (WMNs).Design/methodology/approachThe node placement problem in WMNs is well-known to be a computationally hard problem. Therefore, the authors use intelligent algorithms to solve this problem. The implemented systems are intelligent systems based on meta-heuristics algorithms: Particle Swarm Optimization (PSO), Hill Climbing (HC) and Distributed Genetic Algorithm (DGA). The authors implement two hybrid intelligent systems: WMN-PSODGA and WMN-PSOHC-DGA.FindingsThe authors carried out simulations using the implemented Web interface. From the simulations results, it was found that the WMN-PSOHC-DGA system has a better performance compared with the WMN-PSODGA system.Research limitations/implicationsFor simulations, the authors considered Normal distribution of mesh clients. In the future, the authors need to consider different client distributions, patterns, number of mesh nodes and communication distance.Originality/valueIn this research work, the authors implemented a Web interface for hybrid intelligent systems. The implemented interface can be extended for other metaheuristic algorithms.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Admir Barolli ◽  
Shinji Sakamoto

Purpose The purpose of this paper is to implement a web interface for a hybrid intelligent system. By using the implemented web interface, one can find optimal assignments of mesh routers in wireless mesh networks (WMNs). This study evaluates the implemented system considering three distributions of mesh clients to solve the node placement problem in WMNs. Design/methodology/approach The node placement problem in WMNs is well known to be a computationally hard problem. Therefore, intelligent algorithms are used for solving this problem. The implemented system is a hybrid intelligent system based on meta-heuristics algorithms: particle swarm optimization (PSO) and distributed genetic algorithm (DGA). The proposed system is called WMN-PSODGA. Findings This study carried out simulations using the implemented simulation system. From the simulations results, it was found that the WMN-PSODGA system performs better for chi-square distribution of mesh clients compared with Weibull and exponential distributions. Research limitations/implications For simulations, three different distributions of mesh clients were considered. In the future, other mesh client distributions, number of mesh nodes and communication distance need to be considered. Originality/value This research work, different from other research works, implemented a hybrid intelligent simulation system for WMNs. This study also implemented a web interface for the proposed system, which make the simulation system user-friendly.


2015 ◽  
Vol 5 (2) ◽  
pp. 194-205 ◽  
Author(s):  
Scarlat Emil ◽  
Virginia Mărăcine

Purpose – The purpose of this paper is to discuss how tacit and explicit knowledge determine grey knowledge and how these are stimulated through interactions within networks, forming the grey hybrid intelligent systems (HISs). The feedback processes and mechanisms between internal and external knowledge determine the apparition of grey knowledge into an intelligent system (IS). The extension of ISs is determined by the ubiquity of the internet but, in our framework, the grey knowledge flows assure the viability and effectiveness of these systems. Design/methodology/approach – Some characteristics of the Hybrid Intelligent Knowledge Systems are put forward along with a series of models of hybrid computational intelligence architectures. More, relevant examples from the literature related to the hybrid systems architectures are presented, underlying their main advantages and disadvantages. Findings – Due to the lack of a common framework it remains often difficult to compare the various HISs conceptually and evaluate their performance comparatively. Different applications in different areas are needed for establishing the best combinations between models that are designed using grey, fuzzy, neural network, genetic, evolutionist and other methods. But all these systems are knowledge dependent, the main flow that is used in all parts of every kind of system being the knowledge. Grey knowledge is an important part of the real systems and the study of its proprieties using the methods and techniques of grey system theory remains an important direction of the researches. Originality/value – The paper discusses the differences among the three types of knowledge and how they and the grey systems theory can be used in different hybrid architectures.


2019 ◽  
Vol 10 (2) ◽  
pp. 208-229
Author(s):  
Sanjay Kumar Behera ◽  
Dayal R. Parhi ◽  
Harish C. Das

Purpose With the development of research toward damage detection in structural elements, the use of artificial intelligent methods for crack detection plays a vital role in solving the crack-related problems. The purpose of this paper is to establish a methodology that can detect and analyze crack development in a beam structure subjected to transverse free vibration. Design/methodology/approach Hybrid intelligent systems have acquired their own distinction as a potential problem-solving methodology adopted by researchers and scientists. It can be applied in many areas like science, technology, business and commerce. There have been the efforts by researchers in the recent past to combine the individual artificial intelligent techniques in parallel to generate optimal solutions for the problems. So it is an innovative effort to develop a strong computationally intelligent hybrid system based on different combinations of available artificial intelligence (AI) techniques. Findings In the present research, an integration of different AI techniques has been tested for accuracy. Theoretical, numerical and experimental investigations have been carried out using a fix-hinge aluminum beam of specified dimension in the presence and absence of cracks. The paper also gives an insight into the comparison of relative crack locations and crack depths obtained from numerical and experimental results with that of the results of the hybrid intelligent model and found to be in good agreement. Originality/value The paper covers the work to verify the accuracy of hybrid controllers in a fix-hinge beam which is very rare to find in the available literature. To overcome the limitations of standalone AI techniques, a hybrid methodology has been adopted. The output results for crack location and crack depth have been compared with experimental results, and the deviation of results is found to be within the satisfactory limit.


2014 ◽  
Vol 20 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Shinji Sakamoto ◽  
Elis Kulla ◽  
Tetsuya Oda ◽  
Makoto Ikeda ◽  
Leonard Barolli ◽  
...  

Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.


Sign in / Sign up

Export Citation Format

Share Document