A novel reduced order dynamic model of axial piston motors with compression flow losses and Coulomb friction losses

2019 ◽  
Vol 72 (5) ◽  
pp. 567-573
Author(s):  
Lichen Gu ◽  
Rui Xu ◽  
Nan Wang

Purpose The purpose of this paper is to identify the energy losses factors during the hydro-mechanical conversion process at high pressure via a novel reduced order dynamic model. Design/methodology/approach A novel reduced order dynamic model of the axial piston motor was proposed, which provides an explicit insight to the compression flow losses and the Coulomb friction losses. A fully coupled dynamic model of the piston motor was obtained based on the array bond graph method. And then, a reduced order model was obtained by the composition analysis of flow and torque of the axial piston motor. After that, the energy losses estimation model was presented to predict the energy loss of the piston motor under a wide range of working conditions. The model was verified by comparing the experimental and simulation results. Findings The simulation result indicates that the flow loss caused by oil compression accounts for 59 per cent of the total flow loss, and the Coulomb friction torque accounts for 40 per cent of the total torque loss under a specific working condition. The compression flow loss and Coulomb friction torque are the major factors that lead to the aggravation of energy loss under extreme working conditions of the piston motor. Originality/value At high-pressure condition, the compression flow losses due to fluid compressibility cannot be neglected, and the hydro-mechanical losses in varies friction pairs should involve Coulomb friction losses. Flow and torque loss analytical expression in the model involve the design and control parameters of the piston equipment, which can realize the parameter optimization of the piston equipment for the purpose of energy-saving.

Author(s):  
Tyler Shinn ◽  
Richard Carpenter ◽  
Roger C. Fales

Hydraulic pump health monitoring can give early notice of a catastrophic failure occurring within the pump, saving time and money on repairs. This work focuses on developing a system to monitor an axial piston pump’s volumetric efficiency, using state and parameter estimation techniques. A high order, nonlinear model has been utilized for the axial piston pump. Pressure measurements of the pump are used for a linear Kalman filter (KF) as well as an extended Kalman filter (EKF) to estimate the remaining states of pump model. Volumetric efficiency losses are tracked by the filters via estimation of two flow loss coefficients, low Reynolds and high Reynolds flow loss, which are allowed to vary within the model to track the changes. In a separate analysis, a third parameter, a disturbance torque, was applied to the load and its estimation in a similar process to the flow loss coefficients. Both filters are able to estimate a single flow loss or load. However, the KF was unable to distinguish between two flow losses. The EKF is able to distinguish between low and high Reynolds number flows since it takes into account the nonlinearities in the system including the flow loss characteristics. The EKF shows promise in being able to estimate both flow losses and a load disturbance simultaneously. Both types of filters are found to have fast run times suggesting that the filters could be implemented using typical microcontroller hardware found on industrial and mobile hydraulic machinery.


Author(s):  
Juliang Xiao ◽  
Fan Zeng ◽  
Qiulong Zhang ◽  
Haitao Liu

Purpose This paper aims to propose a forcefree control algorithm that is based on a dynamic model with full torque compensation is proposed to improve the compliance and flexibility of the direct teaching of cooperative robots. Design/methodology/approach Dynamic parameters identification is performed first to obtain an accurate dynamic model. The identification process is divided into two steps to reduce the complexity of trajectory simplification, and each step contains two excitation trajectories for higher identification precision. A nonlinear friction model that considers the angular displacement and angular velocity of joints is proposed as a secondary compensation for identification. A torque compensation algorithm that is based on the Hogan impedance model is proposed, and the torque obtained by an impedance equation is regarded as the command torque, which can be adjusted. The compensatory torque, including gravity torque, inertia torque, friction torque and Coriolis torque, is added to the compensation to improve the effect of forcefree control. Findings The model improves the total accuracy of the dynamic model by approximately 20% after compensation. Compared with the traditional method, the results prove that the forcefree control algorithm can effectively reduce the drag force approximately 50% for direct teaching and realize a flexible and smooth drag. Practical implications The entire algorithm is verified by the laboratory-developed six degrees-of-freedom cooperative robot, and it can be applied to other robots as well. Originality/value A full torque compensation is performed after parameters identification, and a more accurate forcefree control is guaranteed. This allows the cooperative robot to be dragged more smoothly without external sensors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zafer Bingul ◽  
Oguzhan Karahan

Purpose The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and robustness against to different reference trajectories of a 6-DOF Stewart Platform (SP) in joint space. Design/methodology/approach For the optimal design of the proposed control approach, tuning of the controller parameters including membership functions and input-output scaling factors along with the fractional order rate of error and fractional order integral of control signal is tuned with off-line by using particle swarm optimization (PSO) algorithm. For achieving this off-line optimization in the simulation environment, very accurate dynamic model of SP which has more complicated dynamical characteristics is required. Therefore, the coupling dynamic model of multi-rigid-body system is developed by Lagrange-Euler approach. For completeness, the mathematical model of the actuators is established and integrated with the dynamic model of SP mechanical system to state electromechanical coupling dynamic model. To study the validness of the proposed FOFPID controller, using this accurate dynamic model of the SP, other published control approaches such as the PID control, FOPID control and fuzzy PID control are also optimized with PSO in simulation environment. To compare trajectory tracking performance and effectiveness of the tuned controllers, the real time validation trajectory tracking experiments are conducted using the experimental setup of the SP by applying the optimum parameters of the controllers. The credibility of the results obtained with the controllers tuned in simulation environment is examined using statistical analysis. Findings The experimental results clearly demonstrate that the proposed optimal FOFPID controller can improve the control performance and reduce reference trajectory tracking errors of the SP. Also, the proposed PSO optimized FOFPID control strategy outperforms other control schemes in terms of the different difficulty levels of the given trajectories. Originality/value To the best of the authors’ knowledge, such a motion controller incorporating the fractional order approach to the fuzzy is first time applied in trajectory tracking control of SP.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


Author(s):  
Matthew J. Blom ◽  
Michael J. Brear ◽  
Chris G. Manzie ◽  
Ashley P. Wiese

This paper is the second part of a two part study that develops, validates and integrates a one-dimensional, physics-based, dynamic boiler model. Part 1 of this study [1] extended and validated a particular modelling framework to boilers. This paper uses this framework to first present a higher order model of a gas turbine based cogeneration plant. The significant dynamics of the cogeneration system are then identified, corresponding to states in the gas path, the steam path, the gas turbine shaft, gas turbine wall temperatures and boiler wall temperatures. A model reduction process based on time scale separation and singular perturbation theory is then demonstrated. Three candidate reduced order models are identified using this model reduction process, and the simplest, acceptable dynamic model of this integrated plant is found to require retention of both the gas turbine and boiler wall temperature dynamics. Subsequent analysis of computation times for the original physics-based one-dimensional model and the candidate, reduced order models demonstrates that significantly faster than real time simulation is possible in all cases. Furthermore, with systematic replacement of the algebraic states with feedforward maps in the reduced order models, further computational savings of up to one order of magnitude can be achieved. This combination of model fidelity and computational tractability suggest suggests that the resulting reduced order models may be suitable for use in model based control of cogeneration plants.


1988 ◽  
Vol 19 (3) ◽  
pp. 242-248
Author(s):  
Hideki Yanada ◽  
Jyube Wu ◽  
Yoshihiro Kanamaru ◽  
Akira Hibi ◽  
Tsuneo Ichikawa

2019 ◽  
Vol 72 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Liang Yu ◽  
Biao Ma ◽  
Man Chen ◽  
He Yan Li ◽  
Jikai Liu

Purpose This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG). Design/methodology/approach This paper presents an experimental study of a wet clutch concerning the effect of groove patterns on the friction torque and surface temperature. The friction stabilities of RG and WG are investigated with the applied pressure, rotating speed and automatic transmission fluid (ATF) temperature taken into consideration. Findings The friction torque and surface temperature of WG are larger than those of RG under the same operating condition. The friction torque difference between RG and WG grows with the increase of applied pressure and narrows with the increase of ATF temperature. Additionally, their temperature difference expands via increasing the rotating speed and ATF temperature or reducing the applied pressure; in this way, not only the variable coefficient difference between RG and WG can be narrowed, but also the friction stability of the clutch can be improved dramatically. Originality/value This paper explains the thermodynamic differences between RG and WG; moreover, it is verified experimentally that WG has a better friction stability than RG.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuying Zhang ◽  
Yuanhao Zhang

Purpose The purpose of this paper is to study the pumping efficiency of oil seals with different surface textures at different speeds, and the influence of the rotation direction of triangular texture on the sealing performance was further analyzed. Design/methodology/approach Based on the theory of elastohydrodynamic lubrication and the pumping mechanism of rotary shaft seals, establishing a numerical model of mixed lubrication in oil seal sealing area. The model is coupled with the lip surface texture parameters and the two-dimensional average Reynolds equation considering the surface roughness. Findings The results show that the application of lip surface texture technology has obvious influence on the oil film thickness, friction torque and pumping rate of oil seal. The triangular texture has the most significant effect on the increase of pump suction rate. When the rotation direction of triangular texture is 315 degrees, the pumping rate of oil seal is the largest compared with the other seven directions. Originality/value The model has a comprehensive theoretical guidance for the design of new oil seal products, which provides a certain basis for the application of surface texture technology in the field of sealing in the future. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0198/


Sign in / Sign up

Export Citation Format

Share Document