Contact fatigue life prediction of rolling bearing considering machined surface integrity

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Li Cui ◽  
Yin Su

Purpose Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the integrity of the bearing surface. The purpose of this paper is to find new rolling contact fatigue (RCF) life model of rolling bearing. Design/methodology/approach An elastic-plastic finite element (FE) fatigue damage accumulation model based on continuous damage mechanics is established. Surface roughness, surface residual stress and surface hardness of bearing rollers are considered. The fatigue damage and cumulative plastic strain during RCF process are obtained. Mechanism of early fatigue failure of the bearing is studied. RCF life of the bearing under different surface roughness, hardness and residual stress is predicted. Findings To obtain a more accurate calculation result of bearing fatigue life, the bearing surface integrity parameters should be considered and the elastic-plastic FE fatigue damage accumulation model should be used. There exist the optimal surface parameters corresponding to the maximum RCF life. Originality/value The elastic-plastic FE fatigue damage accumulation model can be used to obtain the optimized surface integrity parameters in the design stage of bearing and is helpful for promote the development of RCF theory of rolling bearing.

2017 ◽  
Vol 27 (5) ◽  
pp. 707-728 ◽  
Author(s):  
Lin Si-Jian ◽  
Long Wei ◽  
Tian Da-Qing ◽  
Liao Jun-Bi

In this study, a new nonlinear fatigue damage accumulation model is proposed to consider the effects of loading history and loading sequence under multi-level stress loading based on the Miner–Palmgren rule and S-N curve. By using damage equivalence, the new model is simplified and another form of the model is given. This model improves the application of the traditional Miner–Palmgren rule, by considering not only the loading sequence effect but also the loading history effect. The methods for calculating the degree of safety of specimens and cumulative damage of low-amplitude loads are also presented. Applicability of the new model is validated by predicting the fatigue life of 16Mn and 45 steel specimens under two-level stress loading. Further validation is carried out for the case of 41Cr4 and Aluminum alloys 6082 T6 under multi-level stress loading, and the strengthening and damaging effect of low-amplitude loads is considered. Comparing with the Miner–Palmgren rule and some new models, this new model gives more accurate and reliable prediction.


Sign in / Sign up

Export Citation Format

Share Document