Design an intelligent real-time operation planning system in distributed manufacturing network

2017 ◽  
Vol 117 (4) ◽  
pp. 742-753 ◽  
Author(s):  
Yaqiong Lv ◽  
Danping Lin

Purpose With the new generation Industry 4.0 coming, as well as globalization and outsourcing, products are fabricated by different parties in the distributed manufacturing network and enterprises face the challenge of consistent planning of semi-finished product in each manufacturing process in different geographical locations. The purpose of this paper is to propose a real-time operation planning system in the distributed manufacturing network to intelligently control/plan the manufacturing networks. Design/methodology/approach The feature of the proposed system is to model and simulate large distributed manufacturing networks to streamline the mechanical and production engineering processes with radio frequency identification (RFID) technology, which can keep track of process variants. To deal with concurrency and synchronization, the hierarchical timed colored Petri net (HTCPN) formalism for modeling is selected in this study. This method can help to model graphically and test the discrete events of concurrent operations. Fuzzy inference system can help for knowledge representation, so as to provide knowledge-based decision assistance in distributed manufacturing environment. Findings In this proposed system, there are two main sub-systems: one is the real-time modeling system, and the other one is intelligent operation planning system. These two systems are not parallel in the whole systems while the intelligent operation planning system should be embedded in any stage of the real-time modeling system as needed. That means real time modeling system provides the holistic structure of the studied distributed manufacturing system and realize real-time data transfer and information exchange. At the same time the embedded intelligent operation planning system fulfill operation plan function. Originality/value This new intelligent real-time operation system realizes real-time modeling with RFID-based HTCPN and smart fuzzy engine to fulfill intelligent operation planning which is highly desirable in the environment of Industry 4.0. The new intelligent manufacturing architecture will highly reduce the traditional planning workload and improve the planning results without manual error interference. The new system has been applied in a practical case to demonstrate its feasibility.

2016 ◽  
Vol 43 (6) ◽  
pp. 542-552 ◽  
Author(s):  
Weijun Ren ◽  
Zifeng Wu ◽  
Lei Zhang

Ensuring the safety and efficiency of crane operation is challenging due to the complexity of the lifting operation. The real-time lifting path planning system developed in this paper aims to provide an optimized, collision-free lifting path for mobile crane operators. The first contribution of the developed system is to take advantage of crane mounted sensors and components as the hardware to collect object information. No additional device needs to be purchased. Secondly, the data storage, path planning, optimizing, and visualizing functions are designed to minimize the required computer memory so that the system can be installed and applied on the crane mounted controller for real-time operation. No additional calculation capacity is required. This system has been tested in real construction sites and demonstrated its ability to generate lifting paths satisfying operators’ expectation. The system, as an independent software package, can be installed on any mobile cranes mounted with the necessary hardware.


2015 ◽  
Vol 24 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Rosana Alves Dias ◽  
Filipe Serra Alves ◽  
Margaret Costa ◽  
Helder Fonseca ◽  
Jorge Cabral ◽  
...  

2018 ◽  
Author(s):  
J. I. Alvarez Claramunt ◽  
P. E. Bizzotto ◽  
F. Sapag ◽  
E. Ferrigno ◽  
J. L. Barros ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Shouhei Kidera ◽  
Luz Maria Neira ◽  
Barry D. Van Veen ◽  
Susan C. Hagness

Microwave ablation is widely recognized as a promising minimally invasive tool for treating cancer. Real-time monitoring of the dimensions of the ablation zone is indispensable for ensuring an effective and safe treatment. In this paper, we propose a microwave imaging algorithm for monitoring the evolution of the ablation zone. Our proposed algorithm determines the boundary of the ablation zone by exploiting the time difference of arrival (TDOA) between signals received before and during the ablation at external antennas surrounding the tissue, using the interstitial ablation antenna as the transmitter. A significant advantage of this method is that it requires few assumptions about the dielectric properties of the propagation media. Also the simplicity of the signal processing, wherein the TDOA is determined from a cross-correlation calculation, allows real-time monitoring and provides robust performance in the presence of noise. We investigate the performance of this approach for the application of breast tumor ablation. We use simulated array measurements obtained from finite-difference time-domain simulations of magnetic resonance imaging-derived numerical breast phantoms. The results demonstrate that our proposed method offers the potential to achieve millimeter-order accuracy and real-time operation in estimating the boundary of the ablation zone in heterogeneous and dispersive breast tissue.


2017 ◽  
Vol 5 (5) ◽  
pp. 320-325
Author(s):  
Ahmad T. Jaiad ◽  
Hamzah Sabr Ghayyib

Water is the most precious and valuable because it’s a basic need of all the human beings but, now a day water supply department are facing problem in real time operation this is because less amount of water in resources due to less rain fall. With increase in Population, urban residential areas have increased because of this reasons water has become a crucial problem which affects the problem of water distribution, interrupted water supply, water conservation, water consumption and also the water quality so, to overcome water supply related problems and make system efficient there is need of proper monitoring and controlling system. In this project, we are focusing on continuous and real time monitoring of water supply in IOT platform. Water supply with continuous monitoring makes a proper distribution so that, we can have a record of available amount of water in tanks, flow rate, abnormality in distribution line. Internet of things is nothing but the network of physical objects embedded with electronics, sensors, software, and network connectivity. Monitoring can be done from anywhere as central office. Using Adafruit as free sever data continuously pushed on cloud so we can see data in real time operation. Using different sensors with controller and raspberry pi as Mini computer can monitor data and also control operation from cloud with efficient client server communication.


Sign in / Sign up

Export Citation Format

Share Document