Cultural Change in ALS Real Time Operation and Optimization in Vaca Muerta Through CWE

Author(s):  
J. I. Alvarez Claramunt ◽  
P. E. Bizzotto ◽  
F. Sapag ◽  
E. Ferrigno ◽  
J. L. Barros ◽  
...  
2015 ◽  
Vol 24 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Rosana Alves Dias ◽  
Filipe Serra Alves ◽  
Margaret Costa ◽  
Helder Fonseca ◽  
Jorge Cabral ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Shouhei Kidera ◽  
Luz Maria Neira ◽  
Barry D. Van Veen ◽  
Susan C. Hagness

Microwave ablation is widely recognized as a promising minimally invasive tool for treating cancer. Real-time monitoring of the dimensions of the ablation zone is indispensable for ensuring an effective and safe treatment. In this paper, we propose a microwave imaging algorithm for monitoring the evolution of the ablation zone. Our proposed algorithm determines the boundary of the ablation zone by exploiting the time difference of arrival (TDOA) between signals received before and during the ablation at external antennas surrounding the tissue, using the interstitial ablation antenna as the transmitter. A significant advantage of this method is that it requires few assumptions about the dielectric properties of the propagation media. Also the simplicity of the signal processing, wherein the TDOA is determined from a cross-correlation calculation, allows real-time monitoring and provides robust performance in the presence of noise. We investigate the performance of this approach for the application of breast tumor ablation. We use simulated array measurements obtained from finite-difference time-domain simulations of magnetic resonance imaging-derived numerical breast phantoms. The results demonstrate that our proposed method offers the potential to achieve millimeter-order accuracy and real-time operation in estimating the boundary of the ablation zone in heterogeneous and dispersive breast tissue.


2017 ◽  
Vol 5 (5) ◽  
pp. 320-325
Author(s):  
Ahmad T. Jaiad ◽  
Hamzah Sabr Ghayyib

Water is the most precious and valuable because it’s a basic need of all the human beings but, now a day water supply department are facing problem in real time operation this is because less amount of water in resources due to less rain fall. With increase in Population, urban residential areas have increased because of this reasons water has become a crucial problem which affects the problem of water distribution, interrupted water supply, water conservation, water consumption and also the water quality so, to overcome water supply related problems and make system efficient there is need of proper monitoring and controlling system. In this project, we are focusing on continuous and real time monitoring of water supply in IOT platform. Water supply with continuous monitoring makes a proper distribution so that, we can have a record of available amount of water in tanks, flow rate, abnormality in distribution line. Internet of things is nothing but the network of physical objects embedded with electronics, sensors, software, and network connectivity. Monitoring can be done from anywhere as central office. Using Adafruit as free sever data continuously pushed on cloud so we can see data in real time operation. Using different sensors with controller and raspberry pi as Mini computer can monitor data and also control operation from cloud with efficient client server communication.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Helio Koiti Kuga ◽  
Valdemir Carrara

Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.


Sign in / Sign up

Export Citation Format

Share Document