The Pransky interview: Dr Jun Ho Oh, Professor and Director of Humanoid Robot Research Center, KAIST; Cofounder, Rainbow Robotics Co.

Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research. Findings Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots. Originality/value Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.

Author(s):  
Joanne Pransky

Purpose – This article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach – The interviewee is Dr Yoky Matsuoka, the Vice President of Nest Labs. Matsuoka describes her career journey that led her from a semi-professional tennis player who wanted to build a robot tennis buddy, to a pioneer of neurobotics who then applied her multidisciplinary research in academia to the development of a mass-produced intelligent home automation device. Findings – Dr Matsuoka received a BS degree from the University of California, Berkeley and an MS and PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT). She was also a Postdoctoral Fellow in the Brain and Cognitive Sciences at MIT and in Mechanical Engineering at Harvard University. Dr Matsuoka was formerly the Torode Family Endowed Career Development Professor of Computer Science and Engineering at the University of Washington (UW), Director of the National Science Foundation Engineering Research Center for Sensorimotor Neural Engineering and Ana Loomis McCandless Professor of Robotics and Mechanical Engineering at Carnegie Mellon University. In 2010, she joined Google X as one of its three founding members. She then joined Nest as VP of Technology. Originality/value – Dr Matsuoka built advanced robotic prosthetic devices and designed complementary rehabilitation strategies that enhanced the mobility of people with manipulation disabilities. Her novel work has made significant scientific and engineering contributions in the combined fields of mechanical engineering, neuroscience, bioengineering, robotics and computer science. Dr Matsuoka was awarded a MacArthur Fellowship in which she used the Genius Award money to establish a nonprofit corporation, YokyWorks, to continue developing engineering solutions for humans with physical disabilities. Other awards include the Emerging Inventor of the Year, UW Medicine; IEEE Robotics and Automation Society Early Academic Career Award; Presidential Early Career Award for Scientists and Engineers; and numerous others. She leads the development of the learning and control technology for the Nest smoke detector and Thermostat, which has saved the USA hundreds of billions of dollars in energy expenses. Nest was sold to Google in 2013 for a record $3.2 billion dollars in cash.


Author(s):  
Joanne Pransky

Purpose – The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization, and challenges of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach – The interviewee is Dr Mark W. Tilden, a Robotics Physicist and the inventor of BEAM Robotics. Having built his first 100 bots by the age of nine, Tilden goes on to study at the University of Waterloo and later works at the Los Alamos National Laboratory. There he develops a variety of biomorphic robots including interplanetary explorers and solar-powered bots. During this time, Tilden founds the first BEAM International Olympics. Solarbotics is also formed to disseminate BEAM technologies. At the turn of the millennium, after being approached by toy manufacturer WowWee, Tilden applies his BEAM technology to the consumer toy industry. Findings – From Robobiologist to Chaos Engineer to Toy Consultant to Robotics Physicist, Tilden describes the several decade evolution of his Biomech technologies. Originality/value – The Father of BEAM Robotics, who initially designs single, minimalist biomorphic robots for the space and military industries, transforms his research into the first commercially available affordable humanoid companion for the personal and entertainment robotics industries, culminating in a total of nearly 25 million robots sold worldwide. This experimental physicist continues his pioneering Biomech efforts with hybridization collaborations on life-sized humanoid robots for the home and office.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanne Pransky

Purpose The purpose of this paper is to provide a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, industry engineer-turned entrepreneur regarding his pioneering efforts in bringing a robotic invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Geoff Howe, Senior Vice President of Howe & Howe, Inc., a subsidiary of Textron Systems and a leader in advanced robotic platform solutions and applications built and proven for the most extreme conditions in the world. Geoff and Michael Howe founded Howe & Howe Technologies in 2001 and was acquired by Textron Systems in 2018. In 2010, Howe and Howe developed one of the world’s first robotic fire-fighting solutions. Geoff Howe describes the evolution of the Thermite robotic firefighter’s commercial development, along with the challenges of breaking ground in this new industry. Findings Geoff and his identical twin brother, Michael Howe, are inventors, military contractors, actors and entrepreneurial businessmen famous for their philanthropic drive to give back to their community. When Geoff and Mike were just six years old, they were known as “Howe and Howe Construction.” At the age of eight, Mike and Geoff built their own one room log cabin with the power tools their mom had given them for their birthday. At 16 years old, they started tinkering with vehicles before they even had their drivers’ licenses. They both graduated from Maine high school and colleges with honors. The company’s portfolio includes the RIPSAW® , Thermite, the Badger, Subterranean Rover and other extreme vehicles used for numerous applications. In 2010, Howe and Howe completed three new vehicles. First was the Thermite™ which entered the unmanned ground vehicle (UGV) market as the USA’s first firefighting UGV. The second vehicle was Ripchair™, the development of an off-road wheelchair for those that have become disabled and are unable to walk. The third vehicle was Riptide, the amphibious version of the RIPSAW. Year 2015 saw the commercial development of the Big Dog Extreme 4x4 fire truck and the Thermite RS1 and RS3 firefighting robots. The Big Dog is an off-road truck and also serves as an all-terrain multi-use firetruck. The Thermite provides firefighters and first responders immediate eyes inside the fire as well the ability to safely attack industrial, chemical and HAZMAT fires from their core. The Thermite robot provides safety and inside access on containing and defeating fires of any magnitude. Originality/value Howe & Howe Technologies first gained notoriety in 2001, with the development of the world’s fastest tank, the RIPSAW. Successful demonstrations soon followed, which eventually allowed the Howes, at the age of 31, to be named among the youngest in history to ever receive a multi-million dollar military contract from the USA. Soon after, in 2010, Howe & Howe received a Guinness World Record for developing the world’s smallest armored vehicle, the Badger. By the time the Howes were 36, they had one world record, multiple patents pending for their product developments, as well as military contracts. The Howes also had their own reality television show on a major US network. In 2010, they completed the Thermite, Fire Fighting Unmanned Ground Vehicle. In 2012, the Howes founded “Outdoors Again,” a nonprofit 501c3 organization that holds outdoor events and social activities for those who require the use of a wheelchair.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD and innovator regarding his pioneering efforts. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Nabil Simaan, Professor of Mechanical Engineering, Computer Science and Otolaryngology at Vanderbilt University. He is also director of Vanderbilt’s Advanced Robotics and Mechanism Applications Research Laboratory. In this interview, Simaan shares his unique perspective and approaches on his journey of trying to solve real-world problems in the medical robotics area. Findings Simaan received his BSc, MSc and PhD in mechanical engineering from the Technion – Israel Institute of Technology. He served as Postdoctoral Research Scientist in Computer Science at Johns Hopkins University. In 2005, he joined Columbia University, New York, NY, as an Assistant Professor of Mechanical Engineering until 2010, when he joined Vanderbilt. His current applied research interests include synthesis of novel robotic systems for surgical assistance in confined spaces with applications to minimally invasive surgery of the throat, natural orifice surgery, cochlear implant surgery and dexterous bimanual microsurgery. Theoretical aspects of his research include robot design and kinematics. Originality/value Dr Simaan is a leading pioneer on designing robotic systems and mechanisms for medical applications. Examples include technologies for snake robots licensed to Intuitive Surgical; technologies for micro-surgery of the retina, which led to the formation of AURIS Surgical Robotics; the insertable robotic effector platform (IREP) single-port surgery robot that served as the research prototype behind the Titan Medical Inc. Sport (Single Port Orifice Robotic Technology). Simaan received the NSF Career award for young investigators to design new algorithms and robots for safe interaction with the anatomy. He has served as the Editor for IEEE International Conference on Robotics and Automation, Associate Editor for IEEE Transactions on Robotics, Editorial Board Member of Robotica, Area Chair for Robotics Science and Systems and corresponding Co-chair for the IEEE Technical Committee on Surgical Robotics. In January 2020, he was bestowed the award of Institute of Electrical and Electronics Engineers (IEEE) Fellow for Robotics Advancements. At the end of 2020, he was named a top voice in health-care robotics by technology discovery platform InsightMonk and market intelligence firm BIS Research. Simaan holds 15 patents. A producer of human capital, his education goal is to achieve the best possible outcome with every student he works with.


Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry PhD and inventor regarding his pioneering efforts and the commercialization of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Ken Goldberg, an inventor working at the intersection of art, robotics, and social media. He joined the UC Berkeley faculty in 1995 where he is the UC Berkeley William S. Floyd Jr Distinguished Chair in Engineering and recently served as Chair of the Industrial Engineering and Operations Research Department. He has secondary appointments in UC Berkeley’s Electrical Engineering/Computer Science, Art Practice and the School of Information. Goldberg also holds an appointment at the UC San Francisco Medical School’s Department of Radiation Oncology where he pursues research in medical robotics. Goldberg is Director of the CITRIS “People and Robots” Initiative and the UC Berkeley’s Laboratory for Automation Science and Engineering (AUTOLAB) where he and his students research machine learning for robotics and automation in warehouses, homes, and operating rooms. In this interview, Goldberg shares some of his personal and business perspectives from his career-long pursuit of making robots less clumsy. Findings Goldberg earned dual BS degrees in Electrical Engineering and Economics from the University of Pennsylvania in 1984, and MS and PhD degrees in Computer Science from Carnegie Mellon University in 1990. Goldberg also studied at Edinburgh University and the Technion. From 1991-95 he taught at the University of Southern California, and in fall 2000, he was visiting faculty at the MIT Media Lab. Goldberg and his students pursue research in three primary areas: Geometric Algorithms for Automation, Cloud Robotics, and Robot Learning. Originality/value Goldberg developed the first complete algorithms for part feeding and part fixturing, and developed the first robot on the Internet. His inventions have been awarded nine US Patents. Goldberg has published over 250 peer-reviewed technical papers and edited four books. He co-founded and served as Editor-in-Chief of the IEEE Transactions on Automation Science and Engineering (T-ASE). He is also Co-Founder of the Berkeley AI Research (BAIR) Lab, the Berkeley Center for New Media (BCNM), the African Robotics Network (AFRON), the Center for Automation and Learning for Medical Robotics (CAL-MR), the CITRIS Data and Democracy Initiative (DDI), Hybrid Wisdom Labs, and Moxie Institute. He has presented over four hundred keynote and invited lectures. Goldberg's artwork, closely linked with his research, has appeared in over seventy venues. Ken was awarded the Presidential Faculty Fellowship in 1995 by Bill Clinton, the Joseph Engelberger Robotics Award in 2000, elected IEEE Fellow in 2005, and selected by the IEEE Robotics and Automation Society for the George Saridis Leadership Award in 2016.


Author(s):  
Joanne Pransky

Purpose – The following paper is a “Q & A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned successful business leader, regarding the commercialization and challenges of bringing technological inventions to market while overseeing a company. This paper aims to discuss these issues. Design/methodology/approach – The interviewee is Aldo Zini, President and CEO of Aethon, Inc., a robotics and software company that has developed an innovative automated platform to improve internal supply logistics. In this interview, Zini shares some of the technical and business details that have led up to the latest version of Aethon’s core product, the TUG, a mobile autonomous robot with more than 450 installs worldwide. Findings – Zini received a BS in Industrial Engineering from the University of Pittsburgh and a master’s in Public Management (Health Systems IT) from Carnegie Mellon University. While obtaining his BS degree, Zini did an internship in hospital consulting and became immediately interested in healthcare automation as a way to solve hospital inefficiencies. Zini went on to become the Vice President of Sales and Marketing for Automated Healthcare, which developed the first robotic medication dispensing system for hospitals (ROBOT-Rx) and was acquired by McKesson for $67 million. Before joining and investing in Aethon, Zini was Senior Vice President of sales and marketing for TechRx, one of the largest providers of software solutions to the pharmacy industry, which was sold to NDC Corporation for over $200 million. Originality/value – Zini has been leading the technology revolution in hospital automation for more than 25 years. His contributions to technology-driven companies have led to acquisitions worth more than a quarter of a billion dollars. Zini owns several patents in medication-dispensing technology, and is credited with the development of key methodologies in quantifying the value proposition for several technology platforms deployed in hundreds of hospitals across the country.


Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned successful innovator and leader, regarding the challenges of bringing technological discoveries to fruition. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Martin Haegele, a renowned expert in industrial and service robot applications, technologies and markets. He is Division Director “Intelligent Automation and Clean Manufacturing” and Head of the department “Robot and Assistive Systems” at the Fraunhofer Institute for Manufacturing Engineering and Automation (Fraunhofer IPA). In this interview, Haegele details some of the robotics projects he led and provides his outlook on the European robotics industry. Findings Haegele received a Dipl.-Ing. in Mechanical Engineering from the University of Stuttgart in 1989 and a Master of Science in Mechanical Engineering from George Washington University, Washington DC in 1989. Haegele has led the Robot Systems Department at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, Germany since 1993, and is a member of the Fraunhofer IPA Board. Originality/value Inspired by the book Robotics in Service written by Joseph Engelberger in 1989, Haegele spearheaded ground-breaking applications in the service robot industry. He led a German study on the market potentials and challenges of service robots. He was the project leader and supervisor of numerous service robot developments including a fuel-refilling robot resulting in a fully operational gas station and several generations of mobile robots developed for museums, shopping centers and home applications. Haegele coordinated many publicly funded research projects to develop robot technologies for industrial and service applications. He was coordinator of two large-scale European initiatives (SMErobot and SMErobotics) for the creation of technologies and a new family of robots suitable for small and medium-sized enterprises. He has published more than 80 papers and book chapters and holds four patents. He is a 2007 recipient of the prestigious Joseph Engelberger Award. Furthermore, Haegele is active in the International Federation of Robotics and the euRobotics association.


2019 ◽  
Vol 36 (2) ◽  
pp. 599-621 ◽  
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh

Purpose The purpose of this paper is to design a novel optimized biped robot gait generator which plays an important role in helping the robot to move forward stably. Based on a mathematical point of view, the gait design problem is investigated as a constrained optimum problem. Then the task to be solved is closely related to the evolutionary calculation technique. Design/methodology/approach Based on this fact, this paper proposes a new way to optimize the biped gait design for humanoid robots that allows stable stepping with preset foot-lifting magnitude. The newly proposed central force optimization (CFO) algorithm is used to optimize the biped gait parameters to help a nonlinear uncertain humanoid robot walk robustly and steadily. The efficiency of the proposed method is compared with the genetic algorithm, particle swarm optimization and improved differential evolution algorithm (modified differential evolution). Findings The simulated and experimental results carried out on the small-sized nonlinear uncertain humanoid robot clearly demonstrate that the novel algorithm offers an efficient and stable gait for humanoid robots with respect to accurate preset foot-lifting magnitude. Originality/value This paper proposes a new algorithm based on four key gait parameters that enable dynamic equilibrium in stable walking for nonlinear uncertain humanoid robots of which gait parameters are initiatively optimized with CFO algorithm.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned innovator and entrepreneur regarding his pioneering efforts. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Homayoon Kazerooni, Professor of Mechanical Engineering at the University of California (UC) Berkeley, pioneer and leading entrepreneur of robotic exoskeletons. He is a foremost expert in robotics, control sciences, exoskeletons, bioengineering and mechatronics design. Kazerooni shares in this interview details on his second start-up, US Bionics DBA suitX. Findings Kazerooni received his MS and PhD in Mechanical Engineering from the Massachusetts Institute of Technology (MIT). He has been a Professor at UC Berkeley for over 30 years. He also serves as the Director of the Berkeley Robotics and Human Engineering Laboratory “KAZ LAB.” The lab’s early research focused on enhancing human upper extremity strength, and Kazerooni led his team to successfully develop a new class of intelligent assist devices that are currently marketed worldwide and used by manual laborers in distribution centers and factories worldwide. Dr Kazerooni’s later work focused on the control of human–machine systems specific to human lower extremities. After developing BLEEX, ExoHiker and ExoClimber – three load-carrying exoskeletons – his team at Berkeley created Human Universal Load Carrier. It was the first energetically autonomous, orthotic, lower extremity exoskeleton that allowed its user to carry 100-pound weights in various terrains for an extended period, without becoming physically overwhelmed. The technology was initially licensed to Ekso Bionics and then Lockheed Martin. Kazerooni and his team also developed lower-extremity technology to aid persons who have experienced a stroke, spinal cord injuries or have health conditions that obligate them to use a wheelchair. Originality/value In 2005, Kazerooni founded Ekso Bionics, the very first exoskeleton company in America, which went on to become a publicly owned company in 2014. Ekso, currently marketed by Ekso Bionics, was designed jointly between Ekso Bionics and Berkeley for paraplegics and those with mobility disorders to stand and walk with little physical exertion. In 2011, Austin Whitney, a Berkeley student suffering from lower limb paralysis, walked for commencement in one of Kazerooni’s exoskeletons, “The Austin Exoskeleton Project,” named in honor of Whitney. Kazerooni went on in 2011, to found US Bionics, DBA suitX, a venture capital, industry and government-funded robotics exoskeleton company. suitX’s core technology is focused on the design and manufacturing of affordable industrial and medical exoskeletons to improve the lives of workers and people with gait impairment. suitX has received investment from Wistron (Taiwan), been awarded several US government awards and won two Saint-Gobain NOVA Innovation Awards. suitX has also won the US$1m top prize in the “UAE AI and Robotics for Good” Competition. Its novel health-care exoskeleton Phoenix has recently received FDA approval. Kazerooni has won numerous awards including Discover magazine’s Technological Innovation Award, the McKnight-Land Grant Professorship and has been a recipient of the outstanding ASME Investigator Award. His research was recognized as the most innovative technology of the year in New York Times Magazine. He has served in a variety of leadership roles in the mechanical engineering community and served as editor of two journals: ASME Journal of Dynamics Systems and Control and IEEE Transaction on Mechatronics. Kazerooni has published more than 200 articles to date, delivered over 130 plenary lectures internationally and is the inventors of over 100 patents.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanne Pransky

Purpose The purpose of this paper is to provide a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding his pioneering efforts in starting robotic companies and commercializing technological inventions. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Brennard Pierce, a world-class robotics designer and serial entrepreneur. Pierce is currently consulting in robotics after exiting from his latest startup as cofounder and chief robotics officer of Bear Robotics. Pierce discusses what led him to the field of robotics, the success of Bear Robotics, the challenges he’s faced and his future goals. Findings Pierce received a Bachelor of Science in computer science from Exeter University. He then founded his first startup, 5TWO, a custom software company. Always passionate about robotics as a hobby and now wanting to pursue the field professionally, he sold 5TWO to obtain a Master of Science, Robotics degree from the newly formed Bristol Robotics Lab (BRL) at Bristol University. After BRL, where he designed and built a biped robot that learned to walk using evolutionary algorithms, he joined the Robotics Research team at Carnegie Mellon University where he worked on a full-size humanoid robot for a large electronics company, designing and executing simple experiments for balancing. He then spent the next six years as a PhD candidate and robotics researcher at the Technical University Munich (TUM), Institute for Cognitive Science, where he built a compliant humanoid robot and a new generation of field programmable gate array-based robotic controllers. Afterwards, Pierce established the robotic startup Robotise in Munich to commercialize the omni-directional mobile platforms that he had developed at TUM. A couple of years later, Pierce left Robotise to cofound Bear Robotics, a Silicon Valley based company that brings autonomous robots to the restaurant industry. He remained at Bear Robotics for four years as chief robotics officer. He is presently a robotics consultant, waiting for post-COVID before beginning his next robotic startup. Originality/value Pierce is a seasoned roboticist and a successful entrepreneur. He has 15+ years’ of unique experience in both designing robotic hardware and writing low level embedded and high level cloud software. During his career he has founded three companies, managed small to middle sized interdisciplinary teams, and hired approximately 100 employees of all levels. Pierce’s robotic startup in Munich, Robotise, was solely based on his idea, design and implementation for an autonomous mobile delivery system. The third company he cofounded, Bear Robotics, successfully raised a $32m Series A funding lead by SoftBank. Bear Robotics is the recipient of the USA’s National Restaurant Association Kitchen Innovation Award; Fast Company’s World Changing Ideas Awards; and the Hospitality Innovation Planet 2020 Award.


Sign in / Sign up

Export Citation Format

Share Document