The Pransky interview: Dr Ken Goldberg, Professor, Industrial Engineering and Operations Research, UC Berkeley; Inventor and Artist

Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry PhD and inventor regarding his pioneering efforts and the commercialization of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Ken Goldberg, an inventor working at the intersection of art, robotics, and social media. He joined the UC Berkeley faculty in 1995 where he is the UC Berkeley William S. Floyd Jr Distinguished Chair in Engineering and recently served as Chair of the Industrial Engineering and Operations Research Department. He has secondary appointments in UC Berkeley’s Electrical Engineering/Computer Science, Art Practice and the School of Information. Goldberg also holds an appointment at the UC San Francisco Medical School’s Department of Radiation Oncology where he pursues research in medical robotics. Goldberg is Director of the CITRIS “People and Robots” Initiative and the UC Berkeley’s Laboratory for Automation Science and Engineering (AUTOLAB) where he and his students research machine learning for robotics and automation in warehouses, homes, and operating rooms. In this interview, Goldberg shares some of his personal and business perspectives from his career-long pursuit of making robots less clumsy. Findings Goldberg earned dual BS degrees in Electrical Engineering and Economics from the University of Pennsylvania in 1984, and MS and PhD degrees in Computer Science from Carnegie Mellon University in 1990. Goldberg also studied at Edinburgh University and the Technion. From 1991-95 he taught at the University of Southern California, and in fall 2000, he was visiting faculty at the MIT Media Lab. Goldberg and his students pursue research in three primary areas: Geometric Algorithms for Automation, Cloud Robotics, and Robot Learning. Originality/value Goldberg developed the first complete algorithms for part feeding and part fixturing, and developed the first robot on the Internet. His inventions have been awarded nine US Patents. Goldberg has published over 250 peer-reviewed technical papers and edited four books. He co-founded and served as Editor-in-Chief of the IEEE Transactions on Automation Science and Engineering (T-ASE). He is also Co-Founder of the Berkeley AI Research (BAIR) Lab, the Berkeley Center for New Media (BCNM), the African Robotics Network (AFRON), the Center for Automation and Learning for Medical Robotics (CAL-MR), the CITRIS Data and Democracy Initiative (DDI), Hybrid Wisdom Labs, and Moxie Institute. He has presented over four hundred keynote and invited lectures. Goldberg's artwork, closely linked with his research, has appeared in over seventy venues. Ken was awarded the Presidential Faculty Fellowship in 1995 by Bill Clinton, the Joseph Engelberger Robotics Award in 2000, elected IEEE Fellow in 2005, and selected by the IEEE Robotics and Automation Society for the George Saridis Leadership Award in 2016.

Author(s):  
Joanne Pransky

Purpose – This article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach – The interviewee is Dr Yoky Matsuoka, the Vice President of Nest Labs. Matsuoka describes her career journey that led her from a semi-professional tennis player who wanted to build a robot tennis buddy, to a pioneer of neurobotics who then applied her multidisciplinary research in academia to the development of a mass-produced intelligent home automation device. Findings – Dr Matsuoka received a BS degree from the University of California, Berkeley and an MS and PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT). She was also a Postdoctoral Fellow in the Brain and Cognitive Sciences at MIT and in Mechanical Engineering at Harvard University. Dr Matsuoka was formerly the Torode Family Endowed Career Development Professor of Computer Science and Engineering at the University of Washington (UW), Director of the National Science Foundation Engineering Research Center for Sensorimotor Neural Engineering and Ana Loomis McCandless Professor of Robotics and Mechanical Engineering at Carnegie Mellon University. In 2010, she joined Google X as one of its three founding members. She then joined Nest as VP of Technology. Originality/value – Dr Matsuoka built advanced robotic prosthetic devices and designed complementary rehabilitation strategies that enhanced the mobility of people with manipulation disabilities. Her novel work has made significant scientific and engineering contributions in the combined fields of mechanical engineering, neuroscience, bioengineering, robotics and computer science. Dr Matsuoka was awarded a MacArthur Fellowship in which she used the Genius Award money to establish a nonprofit corporation, YokyWorks, to continue developing engineering solutions for humans with physical disabilities. Other awards include the Emerging Inventor of the Year, UW Medicine; IEEE Robotics and Automation Society Early Academic Career Award; Presidential Early Career Award for Scientists and Engineers; and numerous others. She leads the development of the learning and control technology for the Nest smoke detector and Thermostat, which has saved the USA hundreds of billions of dollars in energy expenses. Nest was sold to Google in 2013 for a record $3.2 billion dollars in cash.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD and innovator regarding his pioneering efforts. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Nabil Simaan, Professor of Mechanical Engineering, Computer Science and Otolaryngology at Vanderbilt University. He is also director of Vanderbilt’s Advanced Robotics and Mechanism Applications Research Laboratory. In this interview, Simaan shares his unique perspective and approaches on his journey of trying to solve real-world problems in the medical robotics area. Findings Simaan received his BSc, MSc and PhD in mechanical engineering from the Technion – Israel Institute of Technology. He served as Postdoctoral Research Scientist in Computer Science at Johns Hopkins University. In 2005, he joined Columbia University, New York, NY, as an Assistant Professor of Mechanical Engineering until 2010, when he joined Vanderbilt. His current applied research interests include synthesis of novel robotic systems for surgical assistance in confined spaces with applications to minimally invasive surgery of the throat, natural orifice surgery, cochlear implant surgery and dexterous bimanual microsurgery. Theoretical aspects of his research include robot design and kinematics. Originality/value Dr Simaan is a leading pioneer on designing robotic systems and mechanisms for medical applications. Examples include technologies for snake robots licensed to Intuitive Surgical; technologies for micro-surgery of the retina, which led to the formation of AURIS Surgical Robotics; the insertable robotic effector platform (IREP) single-port surgery robot that served as the research prototype behind the Titan Medical Inc. Sport (Single Port Orifice Robotic Technology). Simaan received the NSF Career award for young investigators to design new algorithms and robots for safe interaction with the anatomy. He has served as the Editor for IEEE International Conference on Robotics and Automation, Associate Editor for IEEE Transactions on Robotics, Editorial Board Member of Robotica, Area Chair for Robotics Science and Systems and corresponding Co-chair for the IEEE Technical Committee on Surgical Robotics. In January 2020, he was bestowed the award of Institute of Electrical and Electronics Engineers (IEEE) Fellow for Robotics Advancements. At the end of 2020, he was named a top voice in health-care robotics by technology discovery platform InsightMonk and market intelligence firm BIS Research. Simaan holds 15 patents. A producer of human capital, his education goal is to achieve the best possible outcome with every student he works with.


Author(s):  
Joanne Pransky

Purpose The purpose of this paper is to present a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach The interviewee is Dr Aaron Edsinger, a proven entrepreneur and inventor in the field of human-collaborative robotics. Dr Edsinger shares his journey that led him from developing humanoids at Rodney Brooks’ Computer Science and Artificial Intelligence Laboratory at MIT, to cofounding four companies, two of which got purchased by Google. Findings Dr Edsinger received a BS degree in Computer Systems Engineering from Stanford, an MS in Computer Science from the Massachusetts Institute of Technology (MIT) and a PhD in Computer Science from MIT and did post-doctorate research in the Humanoid Robotics Group at the MIT Computer Science and Artificial Intelligence Lab. He co-founded his first company Meka Robotics in 2007 and that same year, he started his second company, HStar Technologies. In 2011, he cofounded Redwood Robotics, and in 2013, he sold Meka and Redwood to Google. From 2013 to 2017, he was a Robotics Director at Google. In August of 2017, he cofounded Hello Robot Inc. Originality/value Dr Edsinger’s work in robotics grew out of the San Francisco robotic art scene in the 1990s. Since then, he has collaborated and built over a dozen research and artistic robot platforms and has been granted 28 patents. His world-class robotic systems encompass Dr Edsinger’s innovative research in dexterous manipulation in unstructured environments, force controlled compliant actuation, human safe robotics, integrated mechatronic engineering and the design of humanoid robots. Domo, the humanoid robot he built, was named one of Time magazine’s Best Inventions of the Year for 2007. Out of the eight robot companies Google purchased in 2013, two were cofounded by Dr Edsinger. In 2017, Dr Edsinger left Google to cofound his new company, Hello Robot Inc, a stealth mode consumer robot company.


Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD and innovator regarding her pioneering efforts and the challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Maja Matarić, Chan Soon-Shiong Distinguished Professor in the Computer Science Department, Neuroscience Program, and the Department of Pediatrics at the University of Southern California, founding director of the USC Robotics and Autonomous Systems Center (RASC), co-director of the USC Robotics Research Lab and Vice Dean for Research in the USC Viterbi School of Engineering. In this interview, Matarić shares her personal and business perspectives on socially assistive robotics. Findings Matarić received her PhD in Computer Science and Artificial Intelligence from MIT in 1994, MS in Computer Science from MIT in 1990 and BS in Computer Science from the University of Kansas in 1987. Inspired by the vast potential for affordable human-centered technologies, she went on to found and direct the Interaction Lab, initially at Brandeis University and then at the University of Southern California. Her lab works on developing human–robot non-physical interaction algorithms for supporting desirable behavior change; she has worked with a variety of beneficiary user populations, including children with autism, elderly with Alzheimer’s, stroke survivors and teens at risk for Type 2 diabetes, among others. Originality/value Matarić is a pioneer of the field of socially assistive robotics (SAR) with the goal of improving user health and wellness, communication, learning and autonomy. SAR uses interdisciplinary methods from computer science and engineering as well as cognitive science, social science and human studies evaluation, to endow robots with the ability to assist in mitigating critical societal problems that require sustained personalized support to supplement the efforts of parents, caregivers, clinicians and educators. Matarić is a Fellow of the American Association for the Advancement of Science (AAAS), Fellow of the IEEE and AAAI, recipient of the Presidential Awards for Excellence in Science, Mathematics & Engineering Mentoring (PAESMEM), the Anita Borg Institute Women of Vision Award for Innovation, Okawa Foundation Award, NSF Career Award, the MIT TR35 Innovation Award, the IEEE Robotics and Automation Society Early Career Award and has received many other awards and honors. She was featured in the science documentary movie “Me & Isaac Newton”, in The New Yorker (“Robots that Care” by Jerome Groopman, 2009), Popular Science (“The New Face of Autism Therapy”, 2010), the IEEE Spectrum (“Caregiver Robots”, 2010), and is one of the LA Times Magazine 2010 Visionaries. Matarić is the author of a popular introductory robotics textbook, “The Robotics Primer” (MIT Press 2007), an associate editor of three major journals and has published extensively.


Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research. Findings Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots. Originality/value Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.


Digitized ◽  
2012 ◽  
Author(s):  
Peter J. Bentley

Your ideas, money, memories, and entertainment are dreams in the minds of computers. But the thoughts of each computer are not simple, they are layered like our own minds. Their lowest, most primitive layers are the instincts of the machine. Middle layers perform more general functions of its silicon mind. Higher layers think about overall concepts. Unlike us, the computer has languages for every layer. We can teach it new ideas by changing any one or all of its layers of thought. We can tell it to consider vast and convoluted concepts. But if we make a single mistake in our instructions, the mind of our digital slave may crash in a virtual epileptic fit. When our silicon students are so pedantic, how can we engineer their thoughts to make them reliable and trustworthy assistants? And if their thoughts become more complicated than anything we can imagine, how can we guarantee they will do what we want them to? . . . Light poured in through the large windows of the lecture room. The sound of scratching pens from nearly thirty distinguished engineers and scientists accompanied every word spoken by John Mauchly. One fellow by the name of Gard from the Wright Field’s Armament Laboratory seemed to be especially diligent, writing hundreds of pages of notes. It was Monday morning, a warm mid-summer day of 1946, some three years after his stimulating tea-time discussions with Turing. Claude Shannon was three weeks into the eight-week course at the Moore School of Electrical Engineering, in the University of Pennsylvania. It had been an honour to be one of the select few invited to hear lectures on designing electronic digital computers. This was the first ever course to be taught on computer science, and Shannon was finding many of the ideas highly stimulating. He’d recently learned a new word from Mauchly: ‘program’ used as a verb. To program an electronic computer was an interesting concept. He was also hearing about some of the politics: apparently two of the lecturers, Mauchly and his colleague Eckert, had resigned from the university just four months ago because of some form of disagreement.


1994 ◽  
Vol 81 (5) ◽  
pp. 666-675 ◽  
Author(s):  
Charles B. Wilson

✓ The author reviews the molecular genetics, pathology, and cell kinetics of meningiomas and the role that regional multiplicity in the dura mater may play in their recurrence. Malignant and radiation-induced meningiomas are discussed, with summaries of series of 60 patients with frankly malignant lesions treated over a period of 22 years at the University of California, San Francisco, and of 10 patients with meningiomas induced by high-dose radiation therapy. Reviewing a 23-year series of 140 patients with subtotally removed meningiomas who were treated postoperatively with radiation, the author recommends that, with meticulous technique, irradiation is effective in preventing the regrowth of subtotally removed benign meningiomas and of all malignant meningiomas. Adoption of both the microscopical cytological grading system proposed by Jääskeläinen's group in Helsinki and the classification of operations proposed by Donald Simpson is also recommended. Wide removal of dura adjacent to meningioma reduces the risk of recurrence, and determination of the bromodeoxyuridine labeling index provides a valid basis for planning treatment and follow-up evaluations. Increased awareness is necessary for early recognition of radiation-induced meningiomas in patients at risk for developing such tumors. For meningiomas in such sites as the parasellar region and the posterior fossa, conservative removal of tumor followed by irradiation is advocated in preference to a radical operation that may cause neurological injury without being curative.


Author(s):  
Joanne Pransky

Purpose – The following paper is a “Q & A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned successful business leader, regarding the commercialization and challenges of bringing technological inventions to market while overseeing a company. The paper aims to discuss these issues. Design/methodology/approach – The interviewee is Dr Steve Cousins, a seasoned executive, entrepreneur and innovator with a strong track record for managing research and development organizations and realizing a significant return on investment. Dr Cousins has dedicated the past near-decade of his life to the mission of building and deploying personal and service robotic technology to assist people. In this interview, Dr Cousins discusses some of the technical and business insights that have led to his most recent robotic advancements as Chief Executive Officer (CEO) of Savioke, a company that is creating autonomous robot helpers for the services industry. Findings – Dr Cousins received his BS and MS degrees in computer science from Washington University, and holds a PhD in computer science from Stanford University. Dr Cousins managed the Advanced Systems Development Laboratory at the Xerox Palo Alto Research Center (PARC) and then went on to lead the IBM Almaden Research Center, one of the top human–computer interaction research groups in the world, as the Senior Manager of the User-Focused Systems Research Group. While at IBM, Dr Cousins earned a micro-MBA. Originality/value – Dr Cousins is spearheading a new business model for robotics, Robots as a Service (RaaS), with Savioke’s flagship mobile robot, Relay. Based on the information technology industry service trend of improving customer experiences, Savioke is successfully applying RaaS to the hospitality industry with about 10 Relays at half a dozen US major hotels. Before founding Savioke, Dr Cousins was the President and CEO of Willow Garage, where he oversaw the creation of the robot operating system (ROS), the PR2 robot and the open-source TurtleBot. In the last three years of his tenure at Willow Garage, Dr Cousins spun off eight successful companies: Suitable Technologies (maker of the Beam remote presence system); Industrial Perception, Inc. (acquired by Google in 2013); Redwood Robotics (acquired by Google in 2013); HiDOF (ROS and robotics consulting); Unbounded Robotics; The Open Source Robotics Foundation; The OpenCV Foundation; and The Open Perception Foundation. Dr Cousins is an active participant in the Robots for Humanity project.


2016 ◽  
Vol 34 (1) ◽  
pp. 130-142 ◽  
Author(s):  
Erich Purpur ◽  
Tara Radniecki ◽  
Patrick Tod Colegrove ◽  
Chrissy Klenke

Purpose – The purpose of this paper is to uninitiate new and non-traditional library resources, such as those commonly found in a makerspace, can often seem abstract, intimidating, or even unrelated to the library mission. The University of Nevada’s DeLaMare Science and Engineering Library set out to engage its on-campus library colleagues to increase awareness and understanding of the new technologies being offered in support of active learning and discovery. Design/methodology/approach – The science and engineering library is experimenting with an ongoing series of inreach/outreach workshops that enable other library faculty and staff from across the greater library organization to experience their non-traditional services and resources. A first pop-up maker technology workshop took place in June 2015 and was composed of three sessions including an introduction to 3D printing and modeling, digital design literacies, and lendable technologies. A survey was distributed to attendees for feedback. Findings – Anecdotal evidence suggest the event was successful, offering a potentially powerful mechanism for engaging and informing library staff about non-traditional resources and technology. Originality/value – This outreach approach may prove valuable for other academic libraries to similarly create awareness of non-traditional resources and technologies among its colleagues.


Sign in / Sign up

Export Citation Format

Share Document