The Pransky interview: Dr Mark W. Tilden, Robotics Physicist

Author(s):  
Joanne Pransky

Purpose – The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization, and challenges of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach – The interviewee is Dr Mark W. Tilden, a Robotics Physicist and the inventor of BEAM Robotics. Having built his first 100 bots by the age of nine, Tilden goes on to study at the University of Waterloo and later works at the Los Alamos National Laboratory. There he develops a variety of biomorphic robots including interplanetary explorers and solar-powered bots. During this time, Tilden founds the first BEAM International Olympics. Solarbotics is also formed to disseminate BEAM technologies. At the turn of the millennium, after being approached by toy manufacturer WowWee, Tilden applies his BEAM technology to the consumer toy industry. Findings – From Robobiologist to Chaos Engineer to Toy Consultant to Robotics Physicist, Tilden describes the several decade evolution of his Biomech technologies. Originality/value – The Father of BEAM Robotics, who initially designs single, minimalist biomorphic robots for the space and military industries, transforms his research into the first commercially available affordable humanoid companion for the personal and entertainment robotics industries, culminating in a total of nearly 25 million robots sold worldwide. This experimental physicist continues his pioneering Biomech efforts with hybridization collaborations on life-sized humanoid robots for the home and office.

Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research. Findings Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots. Originality/value Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.


Author(s):  
Joanne Pransky

Purpose – This article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach – The interviewee is Dr Yoky Matsuoka, the Vice President of Nest Labs. Matsuoka describes her career journey that led her from a semi-professional tennis player who wanted to build a robot tennis buddy, to a pioneer of neurobotics who then applied her multidisciplinary research in academia to the development of a mass-produced intelligent home automation device. Findings – Dr Matsuoka received a BS degree from the University of California, Berkeley and an MS and PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT). She was also a Postdoctoral Fellow in the Brain and Cognitive Sciences at MIT and in Mechanical Engineering at Harvard University. Dr Matsuoka was formerly the Torode Family Endowed Career Development Professor of Computer Science and Engineering at the University of Washington (UW), Director of the National Science Foundation Engineering Research Center for Sensorimotor Neural Engineering and Ana Loomis McCandless Professor of Robotics and Mechanical Engineering at Carnegie Mellon University. In 2010, she joined Google X as one of its three founding members. She then joined Nest as VP of Technology. Originality/value – Dr Matsuoka built advanced robotic prosthetic devices and designed complementary rehabilitation strategies that enhanced the mobility of people with manipulation disabilities. Her novel work has made significant scientific and engineering contributions in the combined fields of mechanical engineering, neuroscience, bioengineering, robotics and computer science. Dr Matsuoka was awarded a MacArthur Fellowship in which she used the Genius Award money to establish a nonprofit corporation, YokyWorks, to continue developing engineering solutions for humans with physical disabilities. Other awards include the Emerging Inventor of the Year, UW Medicine; IEEE Robotics and Automation Society Early Academic Career Award; Presidential Early Career Award for Scientists and Engineers; and numerous others. She leads the development of the learning and control technology for the Nest smoke detector and Thermostat, which has saved the USA hundreds of billions of dollars in energy expenses. Nest was sold to Google in 2013 for a record $3.2 billion dollars in cash.


Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry PhD and inventor regarding his pioneering efforts and the commercialization of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Ken Goldberg, an inventor working at the intersection of art, robotics, and social media. He joined the UC Berkeley faculty in 1995 where he is the UC Berkeley William S. Floyd Jr Distinguished Chair in Engineering and recently served as Chair of the Industrial Engineering and Operations Research Department. He has secondary appointments in UC Berkeley’s Electrical Engineering/Computer Science, Art Practice and the School of Information. Goldberg also holds an appointment at the UC San Francisco Medical School’s Department of Radiation Oncology where he pursues research in medical robotics. Goldberg is Director of the CITRIS “People and Robots” Initiative and the UC Berkeley’s Laboratory for Automation Science and Engineering (AUTOLAB) where he and his students research machine learning for robotics and automation in warehouses, homes, and operating rooms. In this interview, Goldberg shares some of his personal and business perspectives from his career-long pursuit of making robots less clumsy. Findings Goldberg earned dual BS degrees in Electrical Engineering and Economics from the University of Pennsylvania in 1984, and MS and PhD degrees in Computer Science from Carnegie Mellon University in 1990. Goldberg also studied at Edinburgh University and the Technion. From 1991-95 he taught at the University of Southern California, and in fall 2000, he was visiting faculty at the MIT Media Lab. Goldberg and his students pursue research in three primary areas: Geometric Algorithms for Automation, Cloud Robotics, and Robot Learning. Originality/value Goldberg developed the first complete algorithms for part feeding and part fixturing, and developed the first robot on the Internet. His inventions have been awarded nine US Patents. Goldberg has published over 250 peer-reviewed technical papers and edited four books. He co-founded and served as Editor-in-Chief of the IEEE Transactions on Automation Science and Engineering (T-ASE). He is also Co-Founder of the Berkeley AI Research (BAIR) Lab, the Berkeley Center for New Media (BCNM), the African Robotics Network (AFRON), the Center for Automation and Learning for Medical Robotics (CAL-MR), the CITRIS Data and Democracy Initiative (DDI), Hybrid Wisdom Labs, and Moxie Institute. He has presented over four hundred keynote and invited lectures. Goldberg's artwork, closely linked with his research, has appeared in over seventy venues. Ken was awarded the Presidential Faculty Fellowship in 1995 by Bill Clinton, the Joseph Engelberger Robotics Award in 2000, elected IEEE Fellow in 2005, and selected by the IEEE Robotics and Automation Society for the George Saridis Leadership Award in 2016.


Author(s):  
Douglass F. Taber

Zhong-Jun Li of Peking University developed (J. Org. Chem. 2011, 76, 9531) a Co catalyst for selectively replacing one benzyl protecting group of 1 with silyl. Carlo Unverzagt of Universität Bayreuth devised (Chem. Commun. 2011, 47, 10485) oxidative conditions for debenzylating the azide 3 to 4. Tadashi Katoh of Tohoku Pharmaceutical University found (Tetrahedron Lett. 2011, 52, 5395) that the dimethoxybenzyl protecting group of 5 could be selectively removed in the presence of benzyl and p-methoxybenzyl. Scott T. Phillips of Pennsylvania State University showed (J. Org. Chem. 2011, 76, 7352) that in the presence of phosphate buffer, catalytic fluoride was sufficient to desilylate 7. Philip L. Fuchs of Purdue University employed (J. Org. Chem. 2011, 76, 7834, not illustrated) the neutral Robins conditions (Tetrahedron Lett. 1992, 33, 1177) to effect a critical desilylation. Pengfei Wang of the University of Alabama at Birmingham found (J. Org. Chem. 2011, 76, 8955) that an excess of the diol 9 both oxidized the primary alcohol 10 and installed the photolabile protecting group on the product aldehyde. Hiromichi Fujioka of Osaka University showed (Angew. Chem. Int. Ed. 2011, 50, 12232) that addition of Ph3P to 12 transiently protected the aldehyde, allowing selective reduction of the ketone to the alcohol. Willi Bannwarth of Albert-Ludwigs-Universität Freiburg deprotected (Angew. Chem. Int. Ed. 2011, 50, 6175) the chelating amide of 14, leaving the usually sensitive Fmoc group in place. Bruce C. Gibb, now at Tulane University, hydrolyzed (Nature Chem. 2010, 2, 847) 16 more rapidly than the very similar 17, by selective equilibrating complexation of 16 and 17 with a cavitand. Aravamudan S. Gopalan of New Mexico State University converted (Tetrahedron Lett. 2010, 51, 6737) proline 19 to the amide ester 10 by exposure to triethyl orthoacetate. K. Rajender Reddy of the Indian Institute of Chemical Technology oxidized (Angew. Chem. Int. Ed. 2011, 50, 11748) the formamide 22 to the carbamate 23 by exposure to H2O2 in the presence of 21. James M. Boncella of the Los Alamos National Laboratory deprotected (Org. Lett. 2011, 13, 6156) 24 by exposure to visible light in the presence of a Ru catalyst.


Author(s):  
Joanne Pransky

Purpose The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned entrepreneur regarding his pioneering efforts of bringing technological inventions to market. The paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr James Kuffner, CEO at Toyota Research Institute Advanced Development (TRI-AD). Kuffner is a proven entrepreneur and inventor in robot and motion planning and cloud robotics. In this interview, Kuffner shares his personal and professional journey from conceptualization to commercial realization. Findings Dr Kuffner received BS, MS and PhD degrees from the Stanford University’s Department of Computer Science Robotics Laboratory. He was a Japan Society for the Promotion of Science (JSPS) Postdoctoral Research Fellow at the University of Tokyo where he worked on software and planning algorithms for humanoid robots. He joined the faculty at Carnegie Mellon University’s Robotics Institute in 2002 where he served until March 2018. Kuffner was a Research Scientist and Engineering Director at Google from 2009 to 2016. In January 2016, he joined TRI where he was appointed the Chief Technology Officer and Area Lead, Cloud Intelligence and is presently an Executive Advisor. He has been CEO of TRI-AD since April of 2018. Originality/value Dr Kuffner is perhaps best known as the co-inventor of the rapidly exploring random tree (RRT) algorithm, which has become a key standard benchmark for robot motion planning. He is also known for introducing the term “Cloud Robotics” in 2010 to describe how network-connected robots could take advantage of distributed computation and data stored in the cloud. Kuffner was part of the initial engineering team that built Google’s self-driving car. He was appointed Head of Google’s Robotics Division in 2014, which he co-founded with Andy Rubin to help realize the original Cloud Robotics concept. Kuffner also co-founded Motion Factory, where he was the Senior Software Engineer and a member of the engineering team to develop C++ based authoring tools for high-level graphic animation and interactive multimedia content. Motion Factory was acquired by SoftImage in 2000. In May 2007, Kuffner founded, and became the Director of Robot Autonomy where he coordinated research and software consulting for industrial and consumer robotics applications. In 2008, he assisted in the iOS development of Jibbigo, the first on-phone, real-time speech recognition, translation and speech synthesis application for the iPhone. Jibbigo was acquired by Facebook in 2013. Kuffner is one of the most highly cited authors in the field of robotics and motion planning, with over 15,000 citations. He has published over 125 technical papers and was issued more than 50 patents related to robotics and computer vision technology.


Author(s):  
Joanne Pransky

Purpose – This paper, a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal, aims to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach – The interviewee is Dr Esben H. Ostergaard, inventor, co-founder and chief technology officer of Universal Robots. From building his first robot to solve a local industrial problem at the age of four, to building the world’s first collaborative robot company, Dr Ostergaard shares his lifelong ventures as a robot scientist, inventor and entrepreneur. Findings – Dr Ostergaard received degrees in computer science, physics and multimedia at Aarhus University in Denmark, and a PhD in robotics from the University of Southern Denmark. While at Aarhus, Dr Ostergaard pursued his hobby of robot football, and in 1998, his team STATIC became the world champion of the Federation of International Robot-soccer Association (FIRA). Dr Ostergaard held research positions at the University of Southern California (USC) Robotics Labs and at the Advanced Industrial Science and Technology (AIST) in Tsukuba/Tokyo. During the years 2001-2005 as a researcher and assistant professor in robotics and user interfaces at University of Southern Denmark, he created the foundation for a reinvention of the industrial robot. This led him to found Universal Robots in 2005 with two of his research colleagues. Originality/value – From a young child who played with LEGOs until he got a Commodore 64, Dr Ostergaard has always been interested in robotics. His unique multidisciplinary education and multicultural research experiences helped him to pioneer a new multi-axis, lightweight industrial robot and launch the successful company, Universal Robots, which has grown from its three co-founders to nearly 150 employees, with more than 4,000 collaborative robot applications installed in over 50 countries worldwide. Dr Ostergaard has over 30 patents and has received many awards, including the 2012 IEEE-IFR Invention and Entrepreneurship Award (IERA), the 2013 Japanese Institute Good Design Award, the 2013 Robotics Business Review Game Changer Award and the Ernst & Young Entrepreneur of the Year 2012 in Region Funen.


Author(s):  
Joanne Pransky

Purpose – PhD/inventor builds consumer robot start-up company based on low-cost, groundbreaking visual simultaneous localization and mapping (vSLAM) visual sensors and NorthStar® navigation technologies that sells for nearly $75 million dollars 12 years later. The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business, and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization, and challenges of bringing a technological invention to market. The paper aims to discuss these issues. Design/methodology/approach – This interview was with Dr Paolo Pirjanian, CTO of iRobot Corporation. Dr Pirjanian previously served as both CTO and CEO of Evolution Robotics. Dr Pirjanian received his PhD degree from Aalborg University, Denmark. He has received several honors and awards including the IEEE Robotics and Automation Society Early Career Award in 2004 and the Technical Leadership Award from JPL/NASA. Dr Pirjanian holds 67 patents. Findings – The challenges and solutions of transferring technological innovations into an affordable consumer product are presented. The resulting pioneering technologies and approximate 37 patents around vSLAM and NorthStar® were incorporated into Evolution's flagship consumer product, Mint floor cleaning robot. In October 2012, iRobot Corp acquired Evolution for $74 million in an effort to complement their own products and technologies. Originality/value – A robot scientist, in his roles as the CTO and CEO of a robot company, uses a paradigm shift in vision and pattern recognition to build an affordable consumer product and successful company.


Sign in / Sign up

Export Citation Format

Share Document