An anomaly detection method based on double encoder–decoder generative adversarial networks

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hui Liu ◽  
Tinglong Tang ◽  
Jake Luo ◽  
Meng Zhao ◽  
Baole Zheng ◽  
...  

Purpose This study aims to address the challenge of training a detection model for the robot to detect the abnormal samples in the industrial environment, while abnormal patterns are very rare under this condition. Design/methodology/approach The authors propose a new model with double encoder–decoder (DED) generative adversarial networks to detect anomalies when the model is trained without any abnormal patterns. The DED approach is used to map high-dimensional input images to a low-dimensional space, through which the latent variables are obtained. Minimizing the change in the latent variables during the training process helps the model learn the data distribution. Anomaly detection is achieved by calculating the distance between two low-dimensional vectors obtained from two encoders. Findings The proposed method has better accuracy and F1 score when compared with traditional anomaly detection models. Originality/value A new architecture with a DED pipeline is designed to capture the distribution of images in the training process so that anomalous samples are accurately identified. A new weight function is introduced to control the proportion of losses in the encoding reconstruction and adversarial phases to achieve better results. An anomaly detection model is proposed to achieve superior performance against prior state-of-the-art approaches.

Author(s):  
Sudipto Mukherjee ◽  
Himanshu Asnani ◽  
Eugene Lin ◽  
Sreeram Kannan

Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 325
Author(s):  
Ángel González-Prieto ◽  
Alberto Mozo ◽  
Edgar Talavera ◽  
Sandra Gómez-Canaval

Generative Adversarial Networks (GANs) are powerful machine learning models capable of generating fully synthetic samples of a desired phenomenon with a high resolution. Despite their success, the training process of a GAN is highly unstable, and typically, it is necessary to implement several accessory heuristics to the networks to reach acceptable convergence of the model. In this paper, we introduce a novel method to analyze the convergence and stability in the training of generative adversarial networks. For this purpose, we propose to decompose the objective function of the adversary min–max game defining a periodic GAN into its Fourier series. By studying the dynamics of the truncated Fourier series for the continuous alternating gradient descend algorithm, we are able to approximate the real flow and to identify the main features of the convergence of GAN. This approach is confirmed empirically by studying the training flow in a 2-parametric GAN, aiming to generate an unknown exponential distribution. As a by-product, we show that convergent orbits in GANs are small perturbations of periodic orbits so the Nash equillibria are spiral attractors. This theoretically justifies the slow and unstable training observed in GANs.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Keke Gao ◽  
Wenbin Feng ◽  
Xia Zhao ◽  
Chongchong Yu ◽  
Weijun Su ◽  
...  

The spontaneous combustion of residual coals in the mined-out area tends to cause an explosion, which is one kind of severe thermodynamic compound disaster of coal mines and leads to serious losses to people's lives and production safety. The prediction and early warning of coal mine thermodynamic disasters are mainly determined by the changes of the index gas concentration pattern in coal mine mined-out areas collected continuously. The time series anomaly pattern detection method is mainly used to reach the state change of gas concentration pattern. The change of gas concentration follows a certain rule as time changes. A great change in the gas concentration indicates the possibility of coal spontaneous combustion and other disasters. To emphasize the features of collected maker gas and overcome the low anomaly detection accuracy caused by the inadequate learning of the normal mode, this paper adopted a method of anomaly detection for time series with difference rate sample entropy and generative adversarial networks. Because the difference rate entropy feature of abnormal data was much larger than that of normal mode, this paper improved the calculation method of the abnormal score by giving different weights to the detection points to enhance the detection rate. To verify the effectiveness of the proposed method, this paper employed simulation models of the mined-out area and adopted coal samples from Dafosi Coal Mine to carry out experiments. Preliminary testing was performed using monitoring data from a coal mine. The experiment compared the entropy results of different time series with the detection results of generative adversarial networks and automatic encoders and showed that the method proposed in this paper had relatively high detection accuracy.


Sign in / Sign up

Export Citation Format

Share Document