Designing a drone assisted sample collection and testing system during epidemic outbreaks

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sayan Chakraborty ◽  
Raviarun Arumugaraj Nadar ◽  
Aviral Tiwari

Purpose A major component in managing pandemic outbreaks involves testing the suspected individuals and isolating them to avoid transmission in the community. This requires setting up testing centres for diagnosis of the infected individuals, which usually involves movement of either patient from their residence to the testing centre or personnel visiting the patient, thus aggregating the risk of transmission to localities and testing centres. The purpose of this paper is to investigate and minimize such movements by developing a drone assisted sample collection and diagnostic system. Design/methodology/approach Effective control of an epidemic outbreak calls for a rapid response and involves testing suspected individuals and isolating them to avoid transmission in the community. This paper presents the problem in a two-phase manner by locating sample collection centres while assigning neighbourhoods to these collection centres and thereafter, assigning collection centres to nearest testing centres. To solve the mathematical model, this study develops a mixed-integer linear programming model and propose an integrated genetic algorithm with a local search-based approach (GA-LS) to solve the problem. Findings Proposed approach is demonstrated as a case problem in an Indian urban city named Kolkata. Computational results show that the integrated GA-LS approach is capable of producing good quality solutions within a short span of time, which aids to the practicality in the circumstance of a pandemic. Social implications The COVID-19 pandemic has shown that the large-scale outbreak of a transmissible disease may require a restriction of movement to take control of the exponential transmission. This paper proposes a system for the location of clinical sample collection centres in such a way that drones can be used for the transportation of samples from the neighbourhood to the testing centres. Originality/value Epidemic outbreaks have been a reason behind a major number of deaths across the world. The present study addresses the critical issue of identifying locations of temporary sample collection centres for drone assisted testing in major cities, which is by its nature unique and has not been considered by any other previous literature. The findings of this study will be of particular interest to the policy-makers to build a more robust epidemic resistance.

2017 ◽  
Vol 34 (1) ◽  
pp. 145-163 ◽  
Author(s):  
Peng-Sheng You ◽  
Pei-Ju Lee ◽  
Yi-Chih Hsieh

Purpose Many bike rental organizations permit customers to pick-up bikes from one bike station and return them at a different one. However, this service may result in bike imbalance, as bikes may accumulate in stations with low demand. To overcome the imbalance problem, this paper aims to develop a decision model to minimize the total costs of unmet demand and empty bike transport by determining bike fleet size, deployments and the vehicle routing schedule for bike transports. Design/methodology/approach This paper developed a constrained mixed-integer programming model to deal with this bike imbalance problem. The proposed model belongs to the non-deterministic polynomial-time (NP)-hard problem. This paper developed a two-phase heuristic approach to solve the model. In Phase 1, the approach determines fleet size, deployment level and the number of satisfied demands. In Phase 2, the approach determines the routing schedule for bike transfers. Findings Computational results show the following results that the proposed approach performs better than General Algebraic Modeling System (GAMS) in terms of solution quality, regardless of problem size. The objective values and the fleet size of rental bikes allocated increase as the number of rental stations increases. The cost of transportation is not directly proportional to the number of bike stations. Originality/value The authors provide an integrated model to simultaneously deal with the problems of fleet sizing, empty-resource repositioning and vehicle routing for bike transfer in multiple-station systems, and they also present an algorithm that can be applied to large-scale problems which cannot be solved by the well-known commercial software, GAMS/CPLEX.


2019 ◽  
Vol 17 (3) ◽  
pp. 369-395
Author(s):  
Nasser Tarin ◽  
Adel Azar ◽  
Seyyed Abbas Ebrahimi

Purpose Some essential issues about modeling of reverse logistics (RL) systems and product recovery networks include consideration of the qualities of the returned products, taking into account uncertainty and integrating the forward and reverse flows. The purpose of this paper is to develop the integrated RL model, which focuses on the control of inventory and production planning problems in a case of uncertainty in demand, quantities and qualities of returns. Design/methodology/approach The model involves a forward production route, three alternative recovery routes and a disposal route. Various levels of qualities are considered for returned products. A fuzzy mixed integer programming model (FMIP) is developed to provide a solution for the problems of production planning and inventory control. After maximizing the satisfaction degree, different solutions can have the same maximum. Moreover, policies that use all recovery routes and reduce the overall uncertainty have no chance to be chosen. To tackle these problems, a two-phase approach method is applied. Findings According to the results of the numerical example, using different and appropriate recovery options based on the quality of returns can significantly decrease the recovery costs. Similarly, it is shown that the two-phase approach can be an effective and efficient method to reach a satisfactory solution for such problems. Originality/value In this study, after maximizing the FMIP model, a two-phase approach ‒ as a novel optimization technique in this research ‒ is employed to achieve a desirable solution.


2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kennedy Anderson Guimarães de Araújo ◽  
Tiberius Oliveira e Bonates ◽  
Bruno de Athayde Prata

Purpose This study aims to address the hybrid open shop problem (HOSP) with respect to the minimization of the overall finishing time or makespan. In the HOSP, we have to process n jobs in stages without preemption. Each job must be processed once in every stage, there is a set of mk identical machines in stage k and the production flow is immaterial. Design/methodology/approach Computational experiments carried out on a set of randomly generated instances showed that the minimal idleness heuristic (MIH) priority rule outperforms the longest processing time (LPT) rule proposed in the literature and the other proposed constructive methods on most instances. Findings The proposed mathematical model outperformed the existing model in the literature with respect to computing time, for small-sized instances, and solution quality within a time limit, for medium- and large-sized instances. The authors’ hybrid iterated local search (ILS) improved the solutions of the MIH rule, drastically outperforming the models on large-sized instances with respect to solution quality. Originality/value The authors formalize the HOSP, as well as argue its NP-hardness, and propose a mixed integer linear programming model to solve it. The authors propose several priority rules – constructive heuristics based on priority measures – for finding feasible solutions for the problem, consisting of adaptations of classical priority rules for scheduling problems. The authors also propose a hybrid ILS for improving the priority rules solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bochen Wang ◽  
Qiyuan Qian ◽  
Zheyi Tan ◽  
Peng Zhang ◽  
Aizhi Wu ◽  
...  

This study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis, which is a practical problem in the actual industrial field. The objective of the problem is to design a series of routes that minimize the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. The problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with 70 customers, 30 vehicles, and 3 types of hazardous materials.


2017 ◽  
Vol 26 (44) ◽  
pp. 21 ◽  
Author(s):  
John Willmer Escobar

This paper contemplates the supply chain design problem of a large-scale company by considering the maximization of the Net Present Value. In particular, the variability of the demand for each type of product at each customer zone has been estimated. As starting point, this paper considers an established supply chain for which the main problem is to determine the decisions regarding expansion of distribution centers. The problem is solved by using a mixed-integer linear programming model, which optimizes the different demand scenarios. The proposed methodology uses a scheme of optimization based on the generation of multiple demand scenarios of the supply network. The model is based on a real case taken from a multinational food company, which supplies to the Colombian and some international markets. The obtained results were compared with the equivalent present costs minimization scheme of the supply network, and showed the importance and efficiency of the proposed approach as an alternative for the supply chain design with stochastic parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Yunfang Peng ◽  
Tian Zeng ◽  
Yajuan Han ◽  
Beixin Xia

In order to solve the problem of vehicle scheduling to feed parts at automobile assembly line, this study proposes a just-in-time delivery method combined with the mode of material supermarket. A mixed integer linear programming model with the primary objective of using the least number of tow trains is constructed by considering capacity of vehicle and inventory levels of line. On the basis of the minimum number of tow trains, the schedule of each tour is reasonably planned to minimize inventory of assembly line, which is the secondary objective of the part supply problem. Additionally, a heuristic algorithm which can obtain a satisfactory solution in a short time is designed to solve large-scale problems after considering continuity and complexity of modern automobile production. Furthermore, some cases are analyzed and compared with the widely used periodic delivery strategy, and the feasibility of just-in-time model and algorithm is verified. The results reveal that just-in-time delivery strategy has more advantages in reducing inventory level than periodic delivery strategy.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oğuzhan Ahmet Arık

PurposeThis paper presents a mixed-integer programming model for a single machine earliness/tardiness scheduling problem where the objective is to minimize total earliness/tardiness duration when the uncertainty of parameters such as processing times and due date is coded with grey numbers.Design/methodology/approachGrey theory and grey numbers are used for illustrating the uncertainty of parameters in processing times and common due date, where the objective is to minimize the total earliness/tardiness duration. The paper proposes a 0–1 mathematical model for the problem and an effective heuristic method for the problem by using expected processing times for ordering jobs.FindingsThe uncertainty of the processing times and common due date are encoded with grey numbers and a position-dependent mixed-integer mathematical programming model is proposed for the problem in order to minimize total grey earliness/tardiness duration of jobs having grey processing times and a common due date. By using expected processing times for ranking grey processing times, V-shaped property of the problem and an efficient heuristic method for the problem are proposed. Solutions obtained from the heuristic method show that the heuristic is effective. The experimental study also reveals that while differences between upper and lower bounds of grey processing times decrease, the proposed heuristic's performance decreases.Originality/valueThe grey theory and grey numbers have been rarely used as machine scheduling problems. Therefore, this study provides an important contribution to the literature.


Author(s):  
Mojtaba Aghajani ◽  
S. Ali Torabi

Purpose The purpose of this paper is to improve the relief procurement process as one of the most important elements of humanitarian logistics. For doing so, a novel two-round decision model is developed to capture the dynamic nature of the relief procurement process by allowing demand updating. The model accounts for the supply priority of items at response phase as well. Design/methodology/approach A mixed procurement/supply policy is developed through a mathematical model, which includes spot market procurement and a novel procurement auction mechanism combining the concepts of multi-attribute and combinatorial reverse auctions. The model is of bi-objective mixed-integer non-linear programming type, which is solved through the weighted augmented e-constraint method. A case study is also provided to illustrate the applicability of the model. Findings This study demonstrates the ability of proposed approach to model post-disaster procurement which considers the dynamic environment of the relief logistics. The sensitivity analyses provide useful managerial insights for decision makers by studying the impacts of critical parameters on the solutions. Originality/value This paper proposes a novel reverse auction framework for relief procurement in the form of a multi-attribute combinatorial auction. Also, to deal with dynamic environment in the post-disaster procurement, a novel two-period programming model with demand updating is proposed. Finally, by considering the priority of relief items and model’s applicability in the setting of relief logistics, post-disaster horizon is divided into three periods and a mixed procurement strategy is developed to determine an appropriate supply policy for each period.


Sign in / Sign up

Export Citation Format

Share Document