A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data

Kybernetes ◽  
2014 ◽  
Vol 43 (8) ◽  
pp. 1150-1164 ◽  
Author(s):  
Bilal M’hamed Abidine ◽  
Belkacem Fergani ◽  
Mourad Oussalah ◽  
Lamya Fergani

Purpose – The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such data set where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose. The paper aims to discuss these issues. Design/methodology/approach – In this work, the authors propose a robust strategy combining the Synthetic Minority Over-sampling Technique (SMOTE) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem. Findings – The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including HMM, CRF, the traditional C-Support vector machines (C-SVM) and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors. Originality/value – Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F measure.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liang He ◽  
Haiyan Xu ◽  
Ginger Y. Ke

PurposeDespite better accessibility and flexibility, peer-to-peer (P2P) lending has suffered from excessive credit risks, which may cause significant losses to the lenders and even lead to the collapse of P2P platforms. The purpose of this research is to construct a hybrid predictive framework that integrates classification, feature selection, and data balance algorithms to cope with the high-dimensional and imbalanced nature of P2P credit data.Design/methodology/approachAn improved synthetic minority over-sampling technique (IMSMOTE) is developed to incorporate the randomness and probability into the traditional synthetic minority over-sampling technique (SMOTE) to enhance the quality of synthetic samples and the controllability of synthetic processes. IMSMOTE is then implemented along with the grey relational clustering (GRC) and the support vector machine (SVM) to facilitate a comprehensive assessment of the P2P credit risks. To enhance the associativity and functionality of the algorithm, a dynamic selection approach is integrated with GRC and then fed in the SVM's process of parameter adaptive adjustment to select the optimal critical value. A quantitative model is constructed to recognize key criteria via multidimensional representativeness.FindingsA series of experiments based on real-world P2P data from Prosper Funding LLC demonstrates that our proposed model outperforms other existing approaches. It is also confirmed that the grey-based GRC approach with dynamic selection succeeds in reducing data dimensions, selecting a critical value, identifying key criteria, and IMSMOTE can efficiently handle the imbalanced data.Originality/valueThe grey-based machine-learning framework proposed in this work can be practically implemented by P2P platforms in predicting the borrowers' credit risks. The dynamic selection approach makes the first attempt in the literature to select a critical value and indicate key criteria in a dynamic, visual and quantitative manner.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Abbas Akkasi ◽  
Ekrem Varoğlu ◽  
Nazife Dimililer

Named Entity Recognition (NER) from text constitutes the first step in many text mining applications. The most important preliminary step for NER systems using machine learning approaches is tokenization where raw text is segmented into tokens. This study proposes an enhanced rule based tokenizer, ChemTok, which utilizes rules extracted mainly from the train data set. The main novelty of ChemTok is the use of the extracted rules in order to merge the tokens split in the previous steps, thus producing longer and more discriminative tokens. ChemTok is compared to the tokenization methods utilized by ChemSpot and tmChem. Support Vector Machines and Conditional Random Fields are employed as the learning algorithms. The experimental results show that the classifiers trained on the output of ChemTok outperforms all classifiers trained on the output of the other two tokenizers in terms of classification performance, and the number of incorrectly segmented entities.


2018 ◽  
Vol 13 (4) ◽  
pp. 932-951 ◽  
Author(s):  
Sihem Khemakhem ◽  
Fatma Ben Said ◽  
Younes Boujelbene

Purpose Credit scoring datasets are generally unbalanced. The number of repaid loans is higher than that of defaulted ones. Therefore, the classification of these data is biased toward the majority class, which practically means that it tends to attribute a mistaken “good borrower” status even to “very risky borrowers”. In addition to the use of statistics and machine learning classifiers, this paper aims to explore the relevance and performance of sampling models combined with statistical prediction and artificial intelligence techniques to predict and quantify the default probability based on real-world credit data. Design/methodology/approach A real database from a Tunisian commercial bank was used and unbalanced data issues were addressed by the random over-sampling (ROS) and synthetic minority over-sampling technique (SMOTE). Performance was evaluated in terms of the confusion matrix and the receiver operating characteristic curve. Findings The results indicated that the combination of intelligent and statistical techniques and re-sampling approaches are promising for the default rate management and provide accurate credit risk estimates. Originality/value This paper empirically investigates the effectiveness of ROS and SMOTE in combination with logistic regression, artificial neural networks and support vector machines. The authors address the role of sampling strategies in the Tunisian credit market and its impact on credit risk. These sampling strategies may help financial institutions to reduce the erroneous classification costs in comparison with the unbalanced original data and may serve as a means for improving the bank’s performance and competitiveness.


Author(s):  
Mohammad Reza Daliri

AbstractIn this article, we propose a feature selection strategy using a binary particle swarm optimization algorithm for the diagnosis of different medical diseases. The support vector machines were used for the fitness function of the binary particle swarm optimization. We evaluated our proposed method on four databases from the machine learning repository, including the single proton emission computed tomography heart database, the Wisconsin breast cancer data set, the Pima Indians diabetes database, and the Dermatology data set. The results indicate that, with selected less number of features, we obtained a higher accuracy in diagnosing heart, cancer, diabetes, and erythematosquamous diseases. The results were compared with the traditional feature selection methods, namely, the F-score and the information gain, and a superior accuracy was obtained with our method. Compared to the genetic algorithm for feature selection, the results of the proposed method show a higher accuracy in all of the data, except in one. In addition, in comparison with other methods that used the same data, our approach has a higher performance using less number of features.


Sign in / Sign up

Export Citation Format

Share Document