Design of microfluidic experimental setup for the detection of heavy metal ions using piezoresistive BioMEMS sensor

2019 ◽  
Vol 37 (1) ◽  
pp. 10-28 ◽  
Author(s):  
Dinesh Ramkrushna Rotake ◽  
Anand D. Darji ◽  
Nitin S. Kale

Purpose This paper aims to propose a new microfluidic portable experimental platform for quick detection of heavy metal ions (HMIs) in picomolar range. The experimental setup uses a microfabricated piezoresistive sensor (MPS) array of eight cantilevers with ion-selective self-assembled monolayer's (SAM). Design/methodology/approach Most of the components used in this experimental setup are battery operated and, hence, portable to perform the on-field experiments. HMIs (antigen) and thiol-based SAM (antibody) interaction start bending the microcantilever. This results in a change of resistance, which is directly proportional to the surface stress produced due to the mass of targeted HMIs. The authors have used Cysteamine and 4-Mercaptobenzoic acid as a thiol for creating SAM to test the sensitivity and identify the suitable thiol. Some of the cantilevers are blocked using acetyl chloride to use as a reference for error detection. Findings The portable experimental platform achieves very small detection time of 10-25 min with a lower limit of detection (LOD) 0.762 ng (6.05 pM) for SAM of Cysteamine and 4-Mercaptobenzoic acid to detect Mn2+ ions. This technique has excellent potential and capability to selectively detect Hg2+ ions as low as 2.43 pM/mL using SAM of Homocysteine (Hcys)-Pyridinedicarboxylic acid (PDCA). Research limitations/implications As microcantilever is very thin and fragile, it is challenging to apply a surface coating to have selective detection using Nanadispenser. Some of the cantilevers get broken during this process. Originality/value The excessive use and commercialization of NPs are quickly expanding their toxic impact on health and the environment. Also, LOD is limited to nanomolar range. The proposed method used the combination of thin-film, NPs, and MEMS-based technology to overcome the limitation of NPs-based technique and have picomolar range of HMIs detection.

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 298 ◽  
Author(s):  
Noor ul Amin ◽  
Humaira Masood Siddiqi ◽  
Yang Kun Lin ◽  
Zakir Hussain ◽  
Nasir Majeed

A new methodology involving the use of Bovine Serum Albumin (BSA) as a probe and liquid crystal (LC) as a signal reporter for the detection of heavy metal ions in water at neutral pH was developed. BSA acted as a multi-dentate ligand for the detection of multiple metal ions. The LC sensor was fabricated by immobilizing 3 µg mL−1 BSA solution on dimethyloctadecyl-[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-coated glass slides. In the absence of heavy metal ions, a dark optical image was observed, while in their presence, a dark optical image turned to bright. The optical response was characterized by using a polarized optical microscope (POM). The BSA based LC sensor selectively detected toxic metal ions as compared to s block metal ions and ammonium ions in water. Moreover, the limit of detection was found to be very low (i.e., 1 nM) for the developed new biosensor in comparison to reported biosensors.


Author(s):  
Chen Zhao ◽  
Guowei Zhong ◽  
Da-Eun Kim ◽  
Jinxia Liu ◽  
Xinyu Liu

Heavy metal ions released into various water environments have severe impact on both human beings and aqueous environments, and excess amount of lead and aluminum ions pose high risks to human health and could cause life-threatened diseases. The existence of metal ions in drinking water contributes most to the daily intake by humans, and thus it urges to develop a rapid, low-cost and sensitive method for detection of heavy metal ions. In this research, we develop a portable analytical system for metal ion detection in water by combining a powerful gold nanoparticle (AuNP) based colorimetric method with lab-on-a-chip technology. We utilize single-step assays involving surface functionalized AuNPs for colorimetric detection of lead (Pb2+) and aluminum (Al3+) ions in water with low limit of detection (LOD) and high sensitivity. We demonstrate that this portable system provides LODs of 30 ppb for Pb2+ and 89 ppb for Al3+, both comparable to bench-top analytical spectrometers. The system permits metal ion detections in a more economical and convenient fashion, and is particularly useful for water quality monitoring in remote and/or resource-poor settings.


2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


Sign in / Sign up

Export Citation Format

Share Document